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Abstract—Probabilistic forecasts in general and ensemble
forecasting in particular may contain a paradigm shift in the
way renewable energy forecasts have been used and evaluated
in the past 20 years, where deterministic forecasting has been
established and been practiced in all power markets, where
the level of wind power penetration increased over a few
percent of total energy consumption. In the next generation
power system with large amounts of intermittent and renewable
energy sources (RES), where more than a quarter of the energy
is delivered by RES, deterministic methods are no longer suf-
ficient. Handling the uncertainties that come with the variable
weather driven generation from RES is a key requirement for
forecasting tools. Probabilistic forecasting methods offer such
new ways of handling uncertainties that are inherent in the
generation of power from renewable sources. In this paper we
demystify the use of uncertainty forecasts by providing some
important definitions, showing a number of applications with
best practices cases and pitfalls when choosing a solution that
fits the current and future development of an end-user.

I. INTRODUCTION

Although uncertainty terms are part of our day-to-day
communication and language, communication and applica-
tion of uncertainty in weather forecasting and the power in-
dustry’s decision making is still in its infancy on many levels.
Research in psychology and cognitive decision-making has
proven over the past decade that uncertainty information not
only helps decision making, it also reduces the distrust in
forecasts when they fail from time to time.

In the world meteorological organization’s (WMO) guide-
lines on ensemble prediction [1], the WMO actually warns
about ignoring uncertainty in forecasts, even if an end-user
receives a deterministic forecasts. The WMO argues that if
a forecaster issues a deterministic forecast the underlying
uncertainty is still there, and the forecaster has to make
a best guess at the likely outcome. Unless the forecaster
fully understands the decision that the user is going to make
based on the forecast, and the impact of different outcomes,
the forecaster’s best guess may not be well tuned to the real
needs of the user.

It is this gap in the basic understanding of uncertainty
inherent in forecasts that lead to wrong assumptions among
end-users with little or no experience in basic meteorology
or atmospheric science. Mistrust in forecasts and forecasting
methods including uncertainty methodologies often stem
from a wrong expectation on the quality of forecasts for
a specific problem.

If uncertainty forecasts should find their way into the
power industry’s weather related decision making, a deeper

understanding of weather uncertainty, the way weather ser-
vices produce uncertainty of weather forecasts, and how such
forecasts are to be translated into end-user applications is
required [2]. In the following sections, we try to shed some
light into the gaps and pitfalls and highlight some of the
many advantages of applying uncertainty forecasts in power
system applications.

II. UNCERTAINTY FORECASTS: A BRIEF REVIEW

One of the gaps of understanding uncertainty in the power
industry and among those end-users with an interest in
uncertainty forecasts due to higher wind power and solar
power penetration levels is the definition of uncertainty
and the corresponding methodologies that provide forecast
uncertainty. In the IEA Wind Task 36 ”Wind Power Fore-
casting”1 interview analysis it was found that many people
had difficulties distinguishing:

1) forecast error spread
2) confidence interval
3) forecast uncertainty
4) forecast interval

The forecast error spread is defined as the historically
observed deviation of a forecast to its corresponding ob-
servation at a specific time. It can also refer to an average
error provided by an error metric, e.g. variance or standard
deviation. One of the common misunderstandings is that a
confidence interval is showing the uncertainty of a forecast.
This is not the case. By adding and subtracting for example
one standard deviation to the deterministic forecast of wind
speed and converting it to wind power, such intervals rep-
resent a measure of the deviation to climatology and do not
represent current or geographically distributed uncertainty.

The forecast uncertainty on the other hand is defined
as a possible range of forecast values in the future. In
meteorology this range is defined by the uncertainty of
the atmospheric development in the future and represented
in ensemble forecasts by applying perturbations to inital
and boundary conditions and expressing model physics
differences. When represented in forecast intervals the so-
determined uncertainty band represents forecast uncertainty
containing the respective probability of the real value being
contained in the range of forecasted values, which will only
be observed in the future.

1see http://ieawindforecasting.dk
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Forecast intervals can be derived from parametric (e.g.
Gaussian distribution) or non-parametric (e.g. empirical dis-
tribution functions, kernel density estimation) representa-
tions of uncertainty or from a larger number of NWP
forecasts in an ensemble forecasting system that represent
the forecast uncertainty of the target variable.

From these probability density functions (PDFs) quantiles
or percentiles2 can be extracted and higher-order statistics
such as skewness and kurtosis can be calculated. This is
where the distinction is most pronounced: from a statistical
error measure like standard deviation, it is not possible to
derive quantiles or percentiles.

Especially in applications like reserve predictions, ramp
constraints or optimization tasks for storage applications, this
distinction is imperative. Such applications also require that
the geographical distribution of the variables are captured by
scenarios of ensembles of possible outcomes of a pre-defined
value.

In that sense, it is important to have an understanding
about which types of uncertainty representation the various
methods present and how they are built.

Wind power output can be regarded as a stochastic vari-
able when representing it as a probabilistic function. Its prop-
erties can for example be represented by quantiles, moments
of the probability distribution (e.g. mean and variance) or the
full PDF, from which quantiles and moments can be derived.
The “fan chart” is a quite common way of visualization of
a set of forecast intervals that are aggregated in one plot.
Visualizations as shown in Figure 1 may however provide
misleading information to a decision-maker. For example, if
the decision-maker interprets each one of the quantiles as
a possible evolution of wind power production in time, he
needs to be sure that the visualization tool uses the data that
he expects to interpret the information correct.

Let’s look upon an example. A fan chart generated with a
statistical method visualizes the marginal forecast intervals.
The term “marginal forecast interval” is used here since each
interval is only confined to separated forecast lead-times
and does not have information about the joint probability
distribution across the full set of lead times, or in other
words, these intervals are not modeling the inter-temporal
dependency structure of forecast uncertainty. These intervals
are different for each lead-time. Figure 1 shows an example
of a fan chart where the intervals were generated with
a statistical model. The lead-time dependence is visible
through the relatively equal intervals in size over the entire
forecast. The observations (black solid line) are covered,
except for a short period around midnight of the first day. In
that hour there is a probability of around α = 90% (limited
by quantiles 95% and 5%) that the observed value is within
approximately P τ

L

t+k = 0.18 and P τ
H

t+k = 0.65. This is the
typical interpretation. Looking at the observations, another
way to interpret is that there is a 5% likelihood that the
observations are within P τ

L

t+k = 0.63 and P τ
H

t+k = 0.65

In Figure 2 we also see forecast intervals for the same
wind farm and day. This time, the intervals were formed of

2In statistics and the theory of probability, quantiles are cut points
dividing the range of a probability distribution into contiguous intervals
with equal probabilities. The 100-quantiles are called percentiles.
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Fig. 1. Example of a “Fan chart” of wind power production at a single
wind farm built marginal forecast intervals of a statistical method.
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Fig. 2. Example of a “Fan chart” of wind power forecasts at the same time
and wind farm as in 1, built by a 75 member multi-scheme NWP ensemble
system (MSEPS).

300 wind speeds in 4 different heights by a 75 member multi-
scheme NWP based ensemble (MSEPS). These intervals
look very different from the statistically generated intervals.
Even though the 90% probability is within approximately
P τ

L

t+k = 0.21 and P τ
H

t+k = 0.75, the 5% probability that
the observations is found within the upper quantile has an
interval size of 0.25 (range P τ

L

t+k = 0.50 and P τ
H

t+k = 0.75).
That means the interval size is larger by a factor of 10.
Compared to the statistical method, this result indicates that
the current weather development contains a low probability
for a high uncertainty range towards increased production.

Figure 3 shows the same wind farm, forecast days and
method as in Figure 2, but as individual forecasts in a so-
called spaghetti-plot where each of the 300 wind power
forecasts are one line. In this way, it becomes apparent, how
individual ensemble forecast “members” generated outliers.

In comparison to the lead-time dependent approach, the
physical approach forms a large outer quantile band and
a more condensed inner part, indicating that many of the
75 forecasts are aligned in their atmospheric development,
while there are a small number of forecasts that result in
higher power generation. The difference here is that the
intervals are a result of the NWP ensembles reproducing
the physical uncertainty of the current atmospheric processes
that generate the power and are fully independent of the lead-
time. Here, a large spread can be generated based on a very
low likelihood or probability, also if such events have not
been observed before.

An operator or trader has a number of ways to interpret
such a forecast. Two likely scenarios could be: (1) ignoring
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Fig. 3. Example of a spaghetti plot of 300 wind power forecasts at the
same time and wind farm and method as in 2.

the outer interval and acting upon the highest probability
ranges; (2) verifying the system upon issues or the market
price that could arise, if the low probability of high gener-
ation would become reality. Whether the operator or trader
acts upon such a forecast depends on their business practices.
Nevertheless, it shows that the information contained in the
forecast intervals have a direct practical application.

The different results also illustrate that the successful
interpretation of such information depends on the algorithm
used to generate these intervals and an understanding of the
methods with which such intervals have been created. The
major difference here is that one method is based on current
atmospheric conditions (NWP ensemble) and the other relies
on historical documentation of the atmospheric conditions.
Here, the intervals of extremes are usually smaller and less
pronounced unless there are long time series available that
contain a significant number of such extremes to impact the
spread in given weather conditions.

In order to deepen that understanding, we will go into
more detail on how the methods that are today available
as industry standards are formed and explain their main
characteristics in the next section. A more profound review
can be found in Bessa et al. [2].

III. UNCERTAINTY FORECAST METHODOLOGIES

Forecast uncertainty for application in the power industry
are today based on three main processes and procedures (fig.
4):

1) Statistical methods of probabilistic forecasts
2) Statistically-based ensemble scenarios
3) Physically based ensemble forecasts
The first type of methods “Statistical methods of prob-

abilistic forecasts” are based on statistical processing of
past (historic) data in order to derive a probability density
function of the possible forecasting spread. The advantage
of such methods are that they are computationally extremely
cheap and simple to apply. The disadvantage is that none
of these methods produce a realistic representation of the
forecast uncertainty in a spatial and temporal manner. There
is also no physical dependency on the forward results, as
the spread is based on past climatology. Typically, statistical
learning algorithms (e.g., neural networks, machine learning)
are used to fit historical time series of weather parameters
from a NWP model to their corresponding power generation
data. From the fitting process, a PDF can be derived and
used forward in time. A newer, more intelligent method is

Fig. 4. Standard methods of uncertainty forecast generation to be used in
wind power and PV forecasting. The black arrows indicate whether the so-
called ensemble members stem from a statistical procedure or are individual
scenarios.

the analog ensemble method (AnEn) that searches through
historical forecasts for those past events that are most similar
or “analogous” to the current forecast. The observations with
the best fit form the probability distribution of the forecast
uncertainty. So far the method is one-dimensional and hence
does not take geographical or temporal aspects of uncertainty
into account. To be able to benefit from integration of
information from geographically distributed time series or
from a grid of NWP the methods needs to add a second
dimension. This is in the focus of some recent research
[3], where each grid point in an area, where wind farms
are located, is treated independently, using meteorological
analysis instead of observations.

The second type of methods “Statistically-based scenar-
ios” produce statistically-based scenarios that are a result
of statistical generation of scenarios from the probability
distributions produced by statistical models based on the
copula theory. We define them as scenarios, as the further
processing of the approach contains x independent results in
contrast to the statistical method, producing a PDF function.
Such scenarios are quite similar to the third methods, the
physically-based ensembles. However, the uncertainty rep-
resentation of the statistical scenarios today only capture the
spatial variability of the forecast, like ramps. We therefore
distinguish them here as scenarios rather then ensembles.
Outliers that indicate extreme events, for example above cut-
out wind speeds of wind turbines can only be detected with
probability characterization and require an extreme event
analysis. This is due to the conversion to power taking place
in the first step of the statistical training in the same way
as for deterministic forecasts. Extremes in wind power are
in that way difficult to detect, because the flat part of the
power curve prevents extremes that would be visible in the
wind speeds to show up in the power scenarios. The clear
advantage of the statistically based scenarios is that they are
computationally much cheaper than physical ensembles as
they are built from a deterministic weather forecast. They
also generate a much more realistic uncertainty represen-
tation than the pure statistical approach, while only being
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slightly more computationally costly.
The third type of methodologies, the “physically based

ensembles” can be considered a post-processing of a set of
NWP ensemble members, which are a set of NWP forecasts
produced by perturbing the initial or boundary conditions
and/or model physics perturbation, the result from different
parameterization schemes of one NWP model “multi-schem”
approach) or complete different NWP models “multi model”
approach), converted in a subsequent phase into power with
a curve fitting method (see e.g. [2]). The NWP ensemble
is configured to represent the physical uncertainty of the
weather ahead of time rather than uncertainty as a function
of past experience. In practice, this means that the NWP
ensembles, especially the multi-scheme approach, are event
driven, produce outliers and also catch extremes, even those
with a return periods of 50 years. This is a clear distinction
from statistical methods, because even long time-series of
historic data contain too few extreme events to have impact
in the learning algorithms. Often ensemble prediction sys-
tems (EPS) are found “under-dispersive”, i.e. the uncertainty
spread does not cover or represent the uncertainty of the
target variables. This can have many reasons, some often
found reasons being that (1) the ensemble is not targeted
to the variable of interest of the end-user, (2) the time or
spatial resolution is too coarse to capture the small scale
phenomena of the target variable, (3) insufficient information
is extracted or used in the conversion to wind power to
represent a realistic uncertainty. Mostly such deficiencies can
be mitigated by calibration methods ((see e.g. [2]).

IV. APPLICATIONS OF UNCERTAINTY FORECASTS IN THE
POWER INDUSTRY

Some of the most used applications in the power industry
today are:

1) Balancing/trading of wind/solar power
2) Probabilistic reserve setting
3) Situational awareness
4) Flexibility management in smart power grids
5) High-Speed shut down warning system
In the following we will show how such applications can

be implemented and which consideration are required to do
so.

Balancing/trading of wind/solar power

The majority of the renewable energy trading companies
solely use point forecasts, despite the availability of forecast
uncertainty products from the service providers, and apply
expert knowledge for scaling these point forecasts (in some
cases based on the level of uncertainty provided by the 10%
and 90% percentiles) in order to minimize the imbalance
costs.

It is known from the literature that the optimal bid, from
the expected value decision paradigm, consists in a quantile
calculated from the forecasted imbalance costs [4]. There-
fore, the calibration of uncertainty is a critical requirement
for the end-user and has a non-marginal economic impact.
Moreover, in electricity markets with high integration levels
of wind/solar power, the combination of extreme forecast
errors and high imbalance prices is critical and demands
for risk modeling techniques and uncertainty forecasts with

high accuracy in detecting extreme events (e.g., cut-out wind
speed, ramps) ( [2]).

If the portfolio includes energy storage units, the temporal
dependency of forecast uncertainty is a primary requirement
[5]. For this use case, the end-user should request ensemble
forecasts, either from physical or statistical models.

Dynamic reserve setting with probabilistic forecasts
The use of uncertainty forecasts for setting the power

system reserve requirements is probably the most well-
accepted business case for the energy industry. For example,
the Electric Reliability Council of Texas (ERCOT) uses a
probabilistic rule based on data of forecast errors for setting
the non-spinning reserve requirements. Similar concepts are
being explored by European TSOs [6]. A critical requirement
is minimum deviation from perfect calibration to avoid
under- and over-estimation of the risk (i.e., loss of load
probability, probability of curtailing renewable energy) [7].

In this sense, allocating reserve dynamically requires prob-
abilistic forecasts and the value for the TSO is well defined.
Yet, the following challenges remain to be addressed: i)
communication and visualization of forecast uncertainty and
extreme events in TSO dispatch centers; ii) training of human
operators to understand and exploit the probabilistic infor-
mation, i.e. move from a deterministic/ real-time paradigm
to a probabilistic/predictive operation paradigm.

Fig. 5. Example of the graphical visualization an operational dynamic
reserve prediction at a system operator. The reserve requirement with the

Figure 5 shows an example of the graphical visualization
of an operational dynamic reserve prediction system at a
system operator, where operators requested to have various
intervals in order to evaluate which of the intervals was
economically or from a system security aspect the better
choice in a given situation. The reserve requirement is built
with a NWP ensemble approach where the ensemble spread
is related and calibrated to the expected forecast error of
wind power, demand and an estimated cross-border exchange
requirement. The mean of the computed reserve requirement
is scaled to zero and the possible positive and negative
requirement intervals are plotted in form of 4 percentiles
up and down, respectively. The red circles indicate areas,
where the requirements would have been higher than what
e.g. a P20-P80 interval would have covered, if this was the
uncertainty range the operators would have requested. It also
illustrates why the operators wanted to be “aware” of such
outliers, even if they may not have pre-allocated according
to the outer ranges or boundaries.
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Situational awareness

For system operators, information from uncertainty fore-
casts can be integrated at two levels:

1) Visualization and cognition: generate alarms and early
warnings to human operators about predefined events
with impact in the frequency control tasks, e.g. large
ramps, wind turbines tripping, large forecast errors.
With this information, the human operator can use
his/her “natural” neural network to derive a set of
control actions (e.g., change current dispatch, activate
reserve) that mitigate the effects of renewable energy
uncertainty and variability in the system’s frequency.

2) Technical evaluation of network constraints: uncertainty
forecasts can be integrated in a power flow module,
available in commercial energy management systems
(EMS), to detect voltage and congestion problems with
a certain probability threshold [8]. With this information
the human operator can plan preventive actions in
advance, e.g. change the market dispatch, define a cape
for market offers in a specific network area/node.

The following requirements should be requested by the
end-user for the forecasting provider: a) high accuracy in
detecting extreme events related to RES uncertainty and
variability; b) capacity to capture the temporal and spatial
dependency of forecast errors.

Flexibility management in smart power grids

The deployment of smart grid technology enables the
control of distributed energy resources (DER), e.g. storage
and demand response, which flexibility can contribute to
increase the RES hosting capacity while maintaining the
standard quality of supply levels. The combination of fore-
casting systems and optimal power flow tools can be used by
transmissions and distribution system operators to pre-book
flexibility for the next hours in order to handle the technical
constraints of their electrical network [9].

Presently, distribution system operators are starting to
explore RES forecasts in the following use cases: a) forecast
grid operating conditions for the next hours; b) improved
scheduling and technical assessment of transformer mainte-
nance plans; c) contract and activate flexibility from DER to
solve technical problems.

In all these cases, a primary requirement is the need
to have a spatial-temporal representation of forecast uncer-
tainty, where the temporal component is only relevant, if
inter-temporal constraints are required (e.g., operation of
storage devices, control of capacitor banks and on load tap
changers).

Finally, a current topic of interest is the coordination
between the transmission and distribution systems. Different
frameworks for information management and exchange are
under discussion [10]. It is clear that uncertainty fore-
casts can be used to provide future information about
nodal consumption/injection in the interface between the
two networks. For example, the German gridcast research
project (2017-2021) will develop a nodal forecasting system
for the TSO-DSO interface and the FP7 European Project
evolvDSO developed the concept of flexibility maps where
RES forecasts are used to quantify the operating point and

flexibility range in the TSO-DSO interface [11]. This paves
the way to combine information about forecast uncertainty
and flexibility, as proposed in [12].

High-Speed shut down warning system: In a typical area
where high-speed shut down is a challenge for the grid
security, the development of low pressure systems are fre-
quent and the variability of the wind resources are relatively
high. Thus, an alert system concerning high-speed shutdown
of wind power must be established based on probabilities
computed from a probabilistic prediction system that can
take the spatial and temporal scales into consideration in
order to capture the temporal evolution and spatial scale of
such low pressure systems that contain wind speeds leading
to large scale shut-down of wind farms.

This can for example be provided by a physical approach
based on a NWP ensemble that ideally contains all extreme
values inherent in the approach without the requirement
of statistical training. Alternative solutions may exist from
statistical approaches (see III by employing an extreme
event analysis to a statistical ensemble of type 2. This is
due to the requirement that such forecasts must be able to
provide probabilities of extreme events, where each “forecast
member” provides a valid and consistent scenario of the
event. The probabilities need to be suitable solutions for a
decision process. They can be computed for very critical and
less critical events, dependent on the end-users requirements.

Fig. 6. Example of a high-speed shut-down example, where within 5 days
2 extreme events showed up in the risk index of the system (upper graph),
showing the probability of occurrence in terms of probability ranges as
percentiles P10...P90 of a high speed-speed shutdown. The second graph
shows the 5-day wind power forecast inclusive uncertainty intervals as
percentile bands P10...P90 and the observations (black dotted line). The
red circles indicate the time frame in which the alarms were relevant.

Figure 6 shows an example of a real-time setup of such
a high speed shut down warning system. The example
exhibits 2 events. The first graph shows the risk index in
probability space of a high-speed shutdown event to occur.
The second graph shows the wind power forecast with
uncertainties inclusive the observations (black dotted line)
of what happened. From the upper graph, the operator can
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TABLE I
DEFINITIONS OF A HIGH-SPEED SHUT DOWN INDEX FOR A CONTROL

AREA WITH A HIGH PENETRATION LEVEL OF WIND POWER AND A WIND
RESOURCE WITH A HIGH VARIABILITY AND WIND SPEEDS OFTEN

EXCEEDING 25M/S.

wind speed in 100m index value

0 - 22.5 m/s 0.00%
22.5 - 24.5 m/s 0 -¿ 100%

24.5 m/s 100.00%

directly read out the following:
• Case 1 at 26. January:

- 10% probability of 50- 8% probability of 90- 90%
probability of 5

• Case 2 on 31. January:
- 10% probability of 50- 15% probability of 90- 90%
probability of 10

The reality is shown by the observations in the lower graph
of figure 6, where it an be seen that the first case’s peak
value was 35% high-speed shut-down and the second case
exhibited a peak value of 45% of high-speed shut-down.

Practical experience from evaluating high-speed shutdown
events and discussing the alert system with the operators,
showed that it is absolutely crucial that the operators under-
stand the alerts and are capable of checking and verifying
themselves in a graphical way, what they may receive as
written alert. Therefore, the impact of a false alarm needs
to be evaluated, decided upon and documented in the design
phase, so that the operators have a clear reference system
to relate an alert to. Technically, the frequency of the alert
generation should be adjusted to:
a lead time of the alert
b change of severity level since previous alert
c initial and valid week day and time of the day
d severity of the event computed from a ramp-rate perspec-

tive and actions required
e the need and possibility to call back and/or revert actions

The strategy of issuing an alert should include (1) issuing
of every alert according to a simple scheme and (2) reduction
of the amount of alerts to a level that prevents that critical
alerts are not accidentally overlooked.

It was also found that the Use of sliding interval from
23-25m/s was an important introduction into the design to
ensure that tje warning is issued before the event.

An “high-speed event” can be defined as active, if the hub
height wind speed is above 24.5m/s, while there is no event,
if the wind speed is below 22.5m/s. Table IV shows how
such an index may be defined.

As briefly discussed in under IV, if a major fraction
of the power generation is wind dependent, it would be
considered best practice, if the operator is aware of the risk
of high-speed shutdown, even if the likelihood is low, but
still justifiable.

V. WRAP UP

We have been providing a short, but comprehensive review
of currently used methodologies of generating uncertainty
forecasts for the power industry and described a number of

applications, where the value of uncertainty forecasts have
proven concepts and are integrated in today’s business prac-
tices. Looking into these applications, it becomes apparent
that uncertainty forecasts have found their place in the power
industry, but are on the other hand far from being exploited
to a level that could be expected and may be necessary in
the future, considering the value that uncertainty forecasts
already today can provide to many processes and applica-
tions. The IEA Wind 36 Task on wind power forecasting has
dedicated a work package to promote and communicate the
advantages of uncertainty forecasts for the power industry
and shed light into the gaps of understanding how and where
to best make use of such forecasts.
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