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Summary

Wind energy is the energy source that contributes most to the renewable energy mix

of European countries. While there are good wind resources throughout Europe, the

intermittency of the wind represents a major problem for the deployment of wind energy

into the electricity networks. To ensure grid security a Transmission System Operator

needs today for each kilowatt of wind energy either an equal amount of spinning reserve

or a forecasting system that can predict the amount of energy that will be produced

from wind over a period of 1 to 48 hours. In the range from 5m/s to 15m/s a wind

turbine’s production increases with a power of three. For this reason, a Transmission

System Operator requires an accuracy for wind speed forecasts of 1m/s in this wind

speed range.

Forecasting wind energy with a numerical weather prediction model in this context

builds the background of this work. The author’s goal was to present a pragmatic

solution to this specific problem in the ”real world”. This work therefore has to be

seen in a technical context and hence does not provide nor intends to provide a general

overview of the benefits and drawbacks of wind energy as a renewable energy source.

In the first part of this work the accuracy requirements of the energy sector for wind

speed predictions from numerical weather prediction models are described and analysed.

A unique set of numerical experiments has been carried out in collaboration with the

Danish Meteorological Institute to investigate the forecast quality of an operational

numerical weather prediction model for this purpose.

The results of this investigation revealed that the accuracy requirements for wind speed
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and wind power forecasts from today’s numerical weather prediction models can only be

met at certain times. This means that the uncertainty of the forecast quality becomes

a parameter that is as important as the wind speed and wind power itself. To quantify

the uncertainty of a forecast valid for tomorrow requires an ensemble of forecasts.

In the second part of this work such an ensemble of forecasts was designed and verified

for its ability to quantify the forecast error. This was accomplished by correlating the

measured error and the forecasted uncertainty on area integrated wind speed and wind

power in Denmark and Ireland. A correlation of 93% was achieved in these areas.

This method cannot solve the accuracy requirements of the energy sector. By knowing

the uncertainty of the forecasts, the focus can however be put on the accuracy require-

ments at times when it is possible to accurately predict the weather. Thus, this result

presents a major step forward in making wind energy a compatible energy source in

the future.
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Chapter 1

Introduction

Forecasting becomes a requirement for a Transmission System Operator, if wind energy

penetration increases above a threshold value. The magnitude of this threshold value

depends on a number of factors such as the weather pattern, size and connectivity

of the electrical grid, the start up time of the current power plants, the geographical

dispersion of the turbines and the amount of alternative energy sources (e.g. hydro

energy) available to balance the changes in wind power instantly. The main reason for

this requirement is the intermittent nature of wind. Therefore, it is most likely that wind

energy will not continue to contribute to reduce the CO2 emissions in the future without

forecasting. The major alternatives to wind energy forecasting are backup storage

capacity and a strong interconnectivity between the electrical grids. Both alternatives

are associated with technical and economical restrictions, which can be barriers to the

installation of larger amounts of wind energy. Forecasting can therefore be considered

as a more efficient way to increase the wind energy penetration.

On a global map of electricity grids for the year 2003 showing the installed wind energy

relative to the energy consumption on the grid, the western part of Denmark catches

attention. The energy production from wind occasionally exceeds the consumption in

this area. It is the country with world wide the highest percentage of wind power in

terms of installed wind power capacity relative to consumption in the electrical grid.

It was also in the western part of Denmark where wind power was recovered in the

1970ies oil crisis and the first modern turbine was developed. A period of 25 years

2



Chapter 1 Introduction 3

with strong subsistence from the state for constructing and installing wind turbines has

generated a landscape filled with wind turbines. The high concentration of wind power

has caused many problems for the electrical grid operator. Nevertheless, the political

environment has collectively supported wind power independent of all complains from

the local transmission system operator. The result today is that the Danish electrical

grid contains 22% of wind power, which is more than twice the target set by the

European Union for the year 2010 (Commission of the European Countries, 2000).

This area has therefore been chosen as the benchmark area for my theory on how wind

energy can be handled in the future.

From a forecasting point of view, the Danish area does not seem to be problematic.

The country is very homogeneous, surrounded by other countries and the turbines are

geographically dispersed. Ireland was chosen as the second demonstration site. The

purpose was to study the impact of inhomogeneous and complex terrain, and also the

difference between turbines being placed in wind farms and clusters of wind farms

rather than individually. Together the Irish and Danish demonstration sites will hence

cover many problems associated with the penetration of wind power. The prediction

of offshore wind power is not within the scope of this thesis. Nevertheless, most of the

work presented here will also be valid for offshore wind energy.

In the current wind energy forecasting system for the West of Denmark, there are

errors in the prediction of wind power on a daily basis (Jackson, 2003). These errors

result in surpluses or deficits of electrical power. Surpluses are in the Danish case

balanced by supplying electricity to water pumps in Norway, which pump water back

into water reservoirs. Because hydro energy is an almost reversible source of energy,

it is very suitable for balancing prediction errors, which changes rapidly from surplus

to deficit. Deficits of electrical power are balanced with any available energy source.

Hydro energy is used to balance deficits, if it is unknown that a deficit occurs shortly

before the electrical power is required. Without this option and the interconnectivity to

Germany and Sweden, a major part of wind energy in Denmark could not be taken into

the grid in a cost effective way. The only local alternative is to balance the prediction
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errors with gas and coal fired plants. These plant’s startup time is however too long to

be a suitable energy source for creating balance on the grid. In other words, in absence

of the Norwegian hydro stations and the interconnection to the German electrical grid,

a considerable spinning reserve would be required to secure the electrical grid in West

Denmark, because only a small number of turbines can be curtailed.

The development of wind energy is country dependent and the development structure

seems to be a function of the wind resource, the political environment, the electrical grid

and the market. This means that different strategies are required to solve forecasting in

different countries. The split between electrical grid responsible parties and suppliers

in the liberalised markets also increases the complexity of the problem.

A worst case scenario in the years to come is, if the political targets (e.g. the Kyoto

protocols) are met without any reduction of CO2 emissions. Such a worst case scenario

occurs, if too much spinning reserves from brown energy sources (e.g. coal fired plants)

are required to compensate for the unresolved problems regarding the intermittent na-

ture of wind energy. Then the energy production from wind farms cannot be considered

100% CO2 free any longer. In other words, the more backup capacity a system operator

requires to secure the operation, the less environmentally friendly wind power plants

become, regardless of their annual contribution.

In Western Denmark for example a prediction error of 1m/s with an average wind speed

of 10m/s corresponds to approximately 320MW in power. This amount is almost the

equivalent to the largest single fossil fuel power plant in the system of the Transmission

System Operator ELTRA. In this context ELTRA claims (personal communication,

2001) that an increase in accuracy by 1% results in a gain or loss of DKK 2 million.

Even though forecasting today reduces the balancing costs for wind energy, so far no

prediction system can deal with the variability of wind such that an accuracy of 1m/s

is achieved (Jackson, 2003, Knight, 2003).

To summarise, the goal of this work was to analyse the sources of errors in numerical

weather prediction models and to find a pragmatic solution for a typical transmission

system operator to reduce spinning reserve requirements for wind energy.
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I will complete this general introduction by reporting, that there has been a political

decision in the European Union (Commission of the European Countries, 2000) that

20% of renewable energy shall be installed by 2010, where the bulk shall come from wind

energy. The purpose of this thesis is not to discuss, whether this decision is sensible

and what environmental benefits there are, but to suggest a solution on how to deal

with the required amount of wind power in a secure way.

The key result of my thesis is that the approach I introduce in this work is capable of

predicting how reliable wind power is as an energy source in an electrical grid. This

parameter can enhance the environmental value of wind power probably regardless of

the amount of installed capacity. A second important parameter, which can be directly

derived from my approach, is the risk for surpluses and deficits in electrical power due

to deviations between predicted and actual weather that can become dangerous for

the security of the electrical grid in the future. Knowledge of these risks can greatly

enhance the safety on the operation of electrical grids.

Structure of the thesis

The introduction describes the purpose of wind energy forecasting for a transmission

system operator. This is followed by a discussion on the requirements for a weather

prediction system to increase the accuracy of wind speed forecasts.

Chapter 2 and 3 deal with the identification of the specific requirements to increase

the accuracy of meteorological forecasts from numerical weather prediction models. A

unique set of numerical experiments have been carried out in this context in collabo-

ration with the Danish Meteorological Institute in Copenhagen, Denmark. The study

focused on various different horizontal resolutions in the numerical weather prediction

model. The results from this study are discussed and conclusions for the further devel-

opment are drawn.

The first investigations on model resolution resulted in the development of a new method
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to tackle the problems associated with forecasts errors of wind speeds from the mete-

orological centre’s numerical models. A Multi-Scheme Ensemble Prediction System

comprising 50 ensemble members was developed and tested over a 3 months period

with particular focus on Denmark and Ireland for this purpose. The study was actively

supported and sponsored by the Danish Transmission System Operator ELTRA. A de-

tailed description of the system design, the configuration of the 50-member ensemble

and the verification of this ensemble prediction system is presented in Chapter 4.

In Chapter 5 a selection of the most important results for wind power predictions from

the Multi-Scheme Ensemble Prediction System project is presented. The emphasis

in this chapter is on the specifically developed probability forecast products for wind

energy: the uncertainty estimate generated from the ensemble and the mean of the

ensemble.

In Chapter 6 the results of the two studies are summarised and conclusions are drawn.

A Glossary of meteorological terms is added in the Appendix F and aims to define

the most important meteorological terms found in this work. It attempts to present

definitions that might have a different meaning in other scientific areas and to pre-

vent misunderstandings. It should be understandable to the non-meteorologist and a

reference for the specialist.

1.1 State-of-the-art models to convert wind speed

to wind power

State-of-the-art short-term forecasting of wind energy uses a chain of models to predict

wind energy on a 48h-horizon. Existing model systems feed wind speed and direction

from the local national meteorological offices’ Numerical Weather Prediction (NWP)

models into another model, which transforms wind speed to wind power based on either

physical or statistical approaches. The localisation of the wind speed takes place either

explicitly before or implicitly in the equations that produce the power output. In
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most models a number of reference sites are used to compute the wind power, which is

then up-scaled or extrapolated to the relevant area. There are several models on the

market. The models can be classified either as dynamical, physical, statistical, or as

hybrids of any of these. They all require similar input (e.g. wind speed, wind direction,

temperature, pressure, density). They provide the same output (wind power) and

contain the same limitations; none of the models can repair the errors of the numerical

weather prediction model forecasts, which are used as input (e.g. Jackson, 2003).

An example of a physical flow model to convert wind to power including a correction

model to count for shadowing effects in a wind park is Predictor, developed by Risø

National Laboratory in Denmark (Landberg et al. 1999, 2000). This model also used

MOS (model output statistics) on the output of the numerical weather prediction model.

An example of a statistical model using advanced time series analysis techniques to

cover any systematic mismatch of the NWP model and the turbine measurements is

WPPT (Madsen, 1995, 1996 and Nielsen et al., 1999 and 2000). Other models of

this type use neural networks and adaptive statistics together with observations. Two

examples are ISET’s prediction model in Germany (Rohrig, 2000) or MORE CARE, a

model developed under a 5th Framework project (Hatziargyriou, 2001).

The numerical weather prediction (NWP) models fall into the category of dynamical

models. These models are computationally more demanding and mainly used for pro-

viding the input data to the physical, statistical or hybrid models. No other publication

has been found until now of a NWP model where power predictions are produced inside

the three dimensional numerical model than the author’s own publications (Moehrlen

et al., 2001, 2001a, 2002 and Jørgensen et al. 2001, 2002)

1.2 Core problem for current wind power models

The forecasts from the Met Centres are not tailored towards sufficient accurate forecasts

of wind speeds near the surface and in the range of 6-15m/s. This range is most critical

in the production of wind power, because it is the range, where a wind turbine’s power
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production increases or decreases with a power of three (Mengelkamp, 1988). The lack

of accuracy, especially of surface winds from NWP models, has its background in the

structure of these models. The worst errors are usually found near the surface, which

is parameterised 1 in a NWP model. The errors from the met centre’s NWP models

has therefore been identified as the core problem for current wind power models in

various proceedings of meetings and conferences of the wind energy community. Some

examples are the IEA Meeting on Wind Forecasting (2000), EWEA conferences (Copen-

hagen (2001), Brussels (2001), Paris (2002) etc.), and other publications (Jackson, 2003,

Knight, 2003, McGovern, 2003, Giebel, 2001, Landberg, 2000).

The errors from NWP models can be split into local errors and non-local errors. Local

errors are constant over the prediction horizon and are mostly a result of the inaccu-

rate surface representation in the model system. The accuracy of the model’s surface

representation depends mostly on the horizontal resolution of the NWP model and on

the lowest surface level. The local error can be classified as the model’s bias, and can

be corrected with longterm statistics of the output paramters of the model (also known

as model output statistics or MOS).

Non-local or meteorological errors have a meteorological origin and can be considered

as the limits to predictability of the atmosphere. These can be due to deficiencies in

the NWP system that result in a unrealistic error growth. An insufficient amount of

observations that are available to adjust the initial model state before the prediction is

carried out are also considered non-local errors. In fact, most of the NWP model’s error

sources are non-local (Haltinger, 1971). Thus, a local statistical or physical correction

model cannot compensate in the wind power predictions for the wind speed errors

used as input to such a model. It also cannot account for the error in the wind speed

predictions from the NWP models.

From a meteorological point of view, the error sources in fact differ from day to day

depending on the general flow pattern of the atmosphere. Figure 1.1 illustrates the

daily error of a 24 hour wind speed forecast during one month. Forecasts with a small

1The specification of physical processes in a necessarily simplified manner (Physick, 1988).
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error are marked with a dotted black circle and forecasts with a large error are marked

with a grey circle. This illustration shows the variability of the forecast quality. It is

important to note, that the mean error of the forecasts is relatively small, whereas the

daily absolute error has a high variability, which can for example result in significant

errors for a transmission system operator, if if lies within the range of 6-15m/s.

Figure 1.1: Illustration of the daily error of a 24 hour forecast during one month. The

dotted circles are times where the model has a small error, whereas solid line circles

denote times where the model error is high. The dotted circles are in contrast to

meteorological interpretation in wind energy equally or more important than the solid

circles, because of the increased accuracy requirements and the need to identify times

where the forecasts can be trusted (ie.e low uncertainty).

In fact, the most significant errors on a daily basis are often a factor of 2 or 3 greater

than the monthly averaged error. Phase errors in the prediction of low pressure systems

and frontal systems on a synoptic scale contribute most to the total error as either over-

predictions or under-predictions. The total error can therefore be reduced significantly,

if the prediction quality of these phenomena can be improved. This is especially the

case for wind energy predictions, because the synoptic scale weather in Western Europe

mostly causes changes in the wind speed range, which has most impact on the power

production of a typical wind turbine (6-15m/s). Thus, a small error of for example



Chapter 1 Introduction 10

parameter Met Service Met Service Transmission System
(over land) (over sea) Operators Requirement

Forecast Range 0-24h 0-24h 1-6h & 12-48h
Speed Accuracy 5m/s 5m/s 1m/s
Range of interest > 10m/s > 13m/s 5− 15m/s
Direction Accuracy 0.45◦ 0.45◦ 0.15◦

Turbulence Gusts > 20m/s - > 10m/s
Target Area 1000 x 1000km 3000 x 3000km 300 x 300km
Local Effects - - +
Observation Delay 105min 105min -
Compute Time requ. 30min 30min 3h
Forecast Frequency 6h 6h 3h

Table 1.1: Comparison of Wind Specific Requirements of Met Services and Utilities

1 m/s in the predicted wind speed can cause an error of 20% of installed capacity in

predicted wind power (Moehrlen, 2001a, Jackson, 2003).

Table 1.1 gives an overview of the differences between met centres deterministic systems

and utilities requirements. The different requirements in meteorology and wind energy

shown in the table demonstrate that an improvement of the quality of the forecasts for

a meteorological centre means something else than for a utility.

The experiments in the Irish Study focused on the quality of forecasts seen from a

transmission system operator’s point of view and are therefore the first experiments of

this kind.

1.3 Wind power computation

The computation of wind power is by tradition done by using a power curve from a tur-

bine manufacturer on predicted wind speed. This is a simplification, which can be jus-

tified by the lack of accuracy of the predicted wind speed. A numerical weather predic-

tion model provides other variables that may enhance the computation of wind power.

To move the power prediction inside a NWP system provides new opportunities to
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compute the wind power more accurately. Especially on the very short range prediction

horizon (1 to 6 hours ahead), where the NWP model has the highest degree of accuracy,

the need for detailed power prediction with respect to grid security demands highest

quality (Jackson, 2003). On longer time horizons (12h-60h) statistical corrections are

required to reduce the non-local errors. In that case, the advantage lies more in the

flexibility of including second order parameters in the wind to power conversion such

as wind shear, cloud water, turbulent kinetic energy, stability of the boundary layer.

The wind power conversion from wind speed to wind power in this work has taken place

inside the NWP model. A simplified power computation module was implemented

into the numerical model in collaboration with staff from the Danish Meteorological

Institute. Parameters such as air density or vertical wind shear and the turbulence

intensity have not been taken into account within this work. Nevertheless, the power

computation were moved into the NWP model such that the details of the model

state are available in a time resolution of a few minutes. This strategy automatically

eliminates one of the deficiencies of using a mean wind speed in the power computation.

Because of the complex dependency between wind speed and wind power, it is during

windy, unstable weather conditions important to operate with very short time averages

of the wind speed (Moehrlen, 2001a). Accumulating wind power using a short time

step for the wind speed will represent the actual power better than averaging the wind

speed over a number of time steps before using it as input to the power curve. This

effect was already discussed by Mengelkamp in 1988, who also concluded that the time

averaging of the wind speed can affect the power computation significantly.

1.4 The prediction time horizon

For an transmission system operator it is important to separate the power prediction

into three categories (Jackson, 2003, Knight, 2003, McGovern, 2003).

1. The ultra short range prediction (0-9 hours ahead). This forecast range is often

also referred as nowcasting and is in the present context important for the security
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of the electricity grid and for electricity trading on the spot-market. The NWP

forecast error is relatively low in this forecast range and most effort should be put

into computing the wind power as accurately as possible.

2. The short range prediction (10-48 hours ahead). This forecast range is required,

if wind energy should become a substitute for other energy sources, for example

coal or gas. The accuracy requirements are not as high as for the ultra short

range and are dependent on the electricity trading mechanisms. Forecasts on this

time horizon are dominated by NWP forecast errors in the wind speed that last

over more than six hours. In this case it is important to either reduce this error

or alternatively predict this error.

3. The medium range prediction (3-5 days ahead). This forecast horizon is important

in periods of high wind speeds, where wind energy can replace brown energy

sources (e.g. coal fired plants). In fact this forecast horizon is particular important

at days, where the prediction indicates a sustainable wind power contribution for

the following 2-3 days. If this forecasting horizon can be further improved to for

example another 2 days, it would be possible to replace more and more brown

energy sources with wind energy. Another example of the importance of this

forecasting horizon are maintenance related works on the electricity grids or wind

turbines. In both cases the possibility of planing a few days ahead has economic

value. Electricity grid repairs or maintenance should not take place in times with

a lot of incoming wind power. Wind park erections, maintenance or repairs also

require calm conditions (less than 10m/s).

A major problem for utilities at present is that different meteorological data sources are

required to cover all forecast ranges (Jackson, 2003, Knight, 2003, McGovern, 2003).

In this work two of the described time horizons have been researched thoroughly. The

third time horizon (3-5 days) is going beyond the scope of this thesis. Note that at

present only large centres such as the European Center for Medium Range Weather
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Forecasting (ECMWF) in the United Kingdom or the National Centre for Environ-

mental Prediction (NCEP) in the United States of America cover this time horizon in

operational mode.

The time horizons that have been researched in this work can be summarised as follows:

1. The ultra short range is researched by configuring the NWP model HIRLAM in

high resolution over a small area that covers the thesis’ target areas (Ireland and

Denmark).

2. The short range is under investigation by creating an ensemble of NWP models

in coarser resolution. These ensemble forecasts cover a large area such that the

largest errors in the wind power predictions become predictable. The goal is to

configure an ensemble of forecasts such that a high correlation between predicted

uncertainty and actual forecast error is achieved

1.5 The motivation behind this work

The focus of the present work was to verify a NWP model system and adopt the system

in such a way that the described problems or part of the problems can be solved. The

focus when adapting the NWP model DMI-HIRLAM from the Danish Meteorological

Institute was on the requirements of end-users that are dealing with wind energy such as

the transmission system operator ELTRA. This adaptation includes the configuration

of the model system for the specified purpose and the development and implementation

of a wind power module inside the NWP model.

The motivation behind this work was to create a sustainable framework by providing the

ground work for an actual implementation of a NWP model that predicts wind power

together with all standard meteorological parameters for the wind energy community.



Chapter 2

Resolution Experiments with a

Numerical Weather Prediction

Model

The following describes the work performed with a numerical weather prediction model,

which aimed at providing a better understanding of the requirements to such models

when used to forecast wind energy production. The modelling area was centred around

the British Isles and in particular Ireland. The project is therefore referred to as the

Irish Study in the following. Many recently developed approaches to forecast power

production from wind experienced major limitations with respect to accuracy of the

predictions as a result of imperfect input wind speeds from the met centre’s NWP

models (e.g. Madsen, 1996, Nielsen, 1999, Mönnich, 2000, Landberg, 2000).

This prompted an investigation of the sources of errors from these models. Additionally,

it was intended to find solutions to minimise these errors and to find appropriate ways

of handling the requirements of wind energy in NWP models in the future. This is

the background of the experimental campaign, which was technically supported by the

Danish Meteorological Institute (DMI).

Using a NWP model for wind energy forecasting demands high accuracy of the surface

parameters. Therefore, the demands for the precision of land cover data and small grid

spacing in the domain is also high. On the other hand, the size of the domain must be

14
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large enough to include not only all terrain features, which may influence the meso-scale

flow, but also the large scale weather. This was the reason for testing a NWP model in

different horizontal resolutions.

2.1 Experiments in various horizontal Resolutions

Various resolutions were investigated in this experimental campaign with respect to

wind power predictions and the need for more accurate land cover data when modelling

in complex terrain and in high resolution. A selection of five wind farms in Ireland was

chosen for the evaluation of the experiments. As mentioned above, these preliminary

experiments aimed to address the deficiencies of existing models.

Apart from the evaluation and verification of the NWP models’ capability to model wind

speeds, the experiments were also used to develop wind power computations inside the

numerical model.

Throughout the experiments, it was found that there is an advantage in having the

power calculations inside the numerical model. Major physical properties like direction

dependent roughness, actual air density, the stratification of the atmospheric boundary

layer, momentum fluxes, wind shear, gusts and turbulence can then also be used in the

calculations.

2.2 Model Description

The hydrostatic NWP model Hirlam from the Danish Meteorological Institute (DMI)

was used in this study. The Hirlam System was developed by the Hirlam Project group,

a co-operative Project of the national weather services in Denmark, Finland, Iceland,

Ireland, the Netherlands, Norway, Spain and Sweden (Machenhauer, 1988, Gustafsson,

1993, Källén, 1996). Hirlam stands for HIgh resolution Limited Area Model. The

HIRLAM project started in 1983, when the model system was first programmed. The

first operational implementation of the model was run in the Finish Meteorological
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Institute (FNMI) in 1989.

A so-called reference system has been maintained in the European Centre for Medium

range Weather Forecasting (ECMWF) ever since, although most of the 8 countries

involved have a modified version of the reference system in their daily operation. This is

due to differences in computer facilities and technical strategies within the met centres.

There are more than fifty scientists involved in improving and maintaining the Hirlam

system.

A brief description of the implementation of the DMI-HIRLAM system and its configu-

ration is given hereafter. A more detailed description of the model system can be found

in Jørgensen (1999) and Saas et al. (2000).

2.2.1 Model Equations

Atmospheric models used in meteorology are based on the equations of fluid mechanics

discretized in space and time, with geophysical parameters appropriate to the Earth’s

atmosphere. These equations are conservation laws applied to individual parcels of air.

In the DMI-HIRLAM model, these so called primitive equations (PE) are used to

describe the hydrodynamical flow on a sphere under the assumptions that vertical

motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer

depth is small compared to the radius of the sphere.

The precise form of the primitive equations depends on:

1. the vertical coordinate system The hydrostatic approximation allows transforma-

tion of the primitive equations to alternative vertical coordinates, such as pressure,

normalised pressure, normalised height, potential temperature or combinations of

these. This transformation is used to make the numerical implementation of the

equations more accurate.

2. the horizontal representation The equations of motion involve many partial deriva-

tives in space. Partial derivatives of wave fields are used in spectral models and
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can be calculated exactly, or they can be calculated by means of a finite difference

approach or finite element approach, which is used in grid models.

3. the formulation of the advection process The numerical description of the advec-

tion process is split into two branches: the Eulerian and the Semi-Lagrangian.

When the primitive equations are used in numerical weather prediction models, the

equations are of prognostic character and describe the evolution of the wind components

u and v , temperature T, surface pressure ps and humidity q over time. The solution

of these equations contain however some approximations. These are:

- gravity is constant

- the Earth is a sphere and curvature terms are neglected

- the vertical Coriolis force is neglected

- the vertical accelerations are ignored in the vertical momentum equation (hydrostatic

approximation)

In general the primitive equations describe for example how the momentum of an air

parcel changes due to pressure gradients and the Coriolis force. They also describe

vertical movement and changes in surface pressure of an air parcel by keeping the

mass conserved. The temperature changes of an air parcel by adiabatic cooling or

warming due to vertical displacement is also featured. Processes and effects of turbulent

transport and drag, gravity wave breaking, condensation, evaporation and radiative

effects are also included in these equations. The moisture of an air parcel is assumed to

be constant except for losses or gains from precipitation, evaporation and condensation

from and off the continents, oceans and clouds. To solve the primitive equations, some

diagnostic equations are required. These are for example:

- The Ideal Gas Law

p = ρRT (2.1)

where p is pressure in (Pa), ρ is the density in (kg/m3), R is the universal gas constant

(287 J/kg K) and T is the temperature in (K).
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and

- The Hydrostatic Equation
∂φ

∂p
=

−RT

p
(2.2)

where p is pressure, φ is the geopotential, R is the universal gas constant, T is the

temperature.

The ideal gas law describes the relationship between pressure, density and temperature.

The hydrostatic equation describes the relationship between the density of air and the

changes of pressure with height and states that whenever there is no vertical motion, the

difference in pressure (∂p) between two levels (∂Z) is caused by the weight of the layer

of the air. It is used as a simplification of the complete form of the vertical equation of

motion (the non-hydrostatic equation). It assumes that the vertical acceleration in the

non-hydrostatic equation is negligible.

The complicated discrete form of the model equations used in DMI-HIRLAM are de-

scribed in Saas et al. (2000). More in depth descriptions and general derivations of the

primitive equations (PE) can be found for example in Lorenz (1960), Haltiner (1971),

Physick (1988), Krishnamurti (1996) or White (2000).

2.2.2 Model Grid

The vertical resolution in the model is irregularly divided into a specified number of

levels. In this study 32 levels were used. The computational cost is dependent on the

model’s horizontal resolution, but also it’s vertical coordinate system. This number

of levels was chosen, because 32 levels are computationally relatively efficient without

compromising much on the number of levels near the surface. The distance between

these levels is lowest in the Planetary Boundary Layer (PBL) and highest in the Strato-

sphere (approx. 10km to 50km) and lower Mesosphere (approx. 50km to 85km). The

finer resolution in the boundary layer is especially needed to parameterise turbulent

processes. The pressure and geopotential are computed in the middle points of the

levels, the so called half levels, to satisfy the conservation law at the full levels.



Chapter 2 Resolution Experiments with a Numerical Weather Prediction Model 19

For example, when computing the temperature of an air parcel in a model level, the

pressure above and below that air parcel needs to be known. Therefore, some model

variables are computed at the full levels and others at the half levels. The discrete

version of the primitive equation is developed such that pressure, geopotential and

vertical advection terms are defined at half levels and the remaining variables only on

the full levels. The vertical coordinate Equation 2.3 defines the pressure on the discrete

levels. These half level coordinate surfaces for the pressure computations are computed

as:

pk+ 1
2

= Ak+ 1
2

+ Bk+ 1
2
· ps (2.3)

where Ak+ 1
2

and Bk+ 1
2

are predefined coefficients, k is the number of levels (1...N).

Bk+ 1
2

= 0 at the uppermost levels (pressure coordinate surfaces) and Ak+ 1
2

= 0 near

the surface (terrain following coordinates) (Källén, 1996, Saas et al. 2000).

Table 2.1 shows the vertical coordinate surfaces for geopotential and pressure and in-

cludes the coefficients A and B at half levels and full levels for the model configuration

used in this study. The values for A and B at the full levels are linearly interpolated.

The pressure is computed according to Equation 2.3.

The height above ground (geopotential) is calculated for each level by combining the

ideal gas law (Equation 2.1) and the hydrostatic equation (Equation 2.2). Note, that

these values are only valid for one specific surface pressure and one specific temper-

ature profile. These values change when the pressure and temperature are updated

throughout the forecast according to

∂φ

∂η
= − RT

p · ∂p
∂η

(2.4)

where φ is the geopotential height, R is the Universal Gas Constant, T is temperature.
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level Ak+1/2 Bk+1/2 Ak Bk pk[Pa] z[m]

32 0.000 0.997 0.000 0.998 101187.8 11.1

31 0.000 0.993 0.000 0.995 100864.7 37.3

30 0.000 0.989 0.000 0.991 100471.4 69.3

29 13.449 0.981 6.724 0.985 99867.2 118.8

28 29.207 0.972 21.328 0.977 99019.5 188.6

27 65.672 0.958 47.439 0.965 97885.9 283.1

26 109.381 0.942 87.526 0.950 96425.2 406.3

25 177.335 0.922 143.358 0.932 94624.2 560.9

24 259.195 0.898 218.265 0.910 92443.4 752.1

23 366.695 0.869 312.945 0.884 89895.1 981.4

22 495.699 0.837 431.197 0.853 86952.3 1254.4

21 650.567 0.801 573.133 0.819 83647.7 1572.2

20 834.681 0.762 742.624 0.781 79976.1 1940.4

19 1044.629 0.719 939.655 0.740 75984.3 2360.4

18 1290.792 0.672 1167.710 0.696 71694.4 2837.2

17 1563.592 0.624 1427.192 0.648 67160.1 3373.1

16 1877.765 0.573 1720.679 0.599 62431.8 3972.1

15 2222.023 0.521 2049.894 0.547 57561.9 4638.4

14 2609.347 0.469 2415.685 0.495 52622.8 5374.4

13 3036.083 0.415 2822.715 0.442 47658.4 6187.5

12 3500.043 0.363 3268.063 0.389 42750.4 7078.9

11 4024.616 0.310 3762.330 0.337 37929.6 8061.0

10 4560.539 0.260 4292.577 0.285 33268.9 9136.1

9 5200.480 0.210 4880.509 0.235 28785.6 10325.1

8 5762.078 0.165 5481.279 0.187 24525.7 11638.2

7 6504.598 0.118 6133.337 0.141 20497.6 13114.1

6 6847.548 0.079 6676.073 0.099 16708.3 14791.7

5 7436.982 0.039 7142.265 0.059 13166.5 16757.7

4 6512.910 0.017 6974.946 0.028 9841.0 19160.0

3 5253.873 0.000 5883.391 0.008 6754.7 22299.8

2 2500.000 0.000 3876.936 0.000 3876.9 27029.3

1 0.000 0.000 1250.000 0.000 1250.0 38130.3

Table 2.1: Example of a vertical coordinate table for the experiments in the Irish Study

The hydrostatic DMI-HIRLAM uses the general pressure based and terrain following

vertical coordinate system, which is called η(p, ps) coordinate system, where p is pres-

sure and ps is surface pressure. The function η itself however is unknown, because there

is no requirement for having explicit knowledge about η. Equation 2.4 is sufficient to
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close the primitive equations, because it defines the vertical velocity in each layer once

the surface pressure tendency is computed by vertical integration of the continuity equa-

tion. Note, that a terrain following vertical coordinate system is one with the lowest

coordinate surfaces that follow the terrain.

For flow over complex terrain a vertical sigma-coordinate in which pressure is nor-

malised by the surface pressure is often employed instead of general pressure coordi-

nates (Physick, 1988). The sigma coordinate system defines the vertical position of a

point in the atmosphere as a ratio of the pressure difference between that point and the

top of the domain to that of the pressure difference between a fundamental base below

the point and the top of the domain.

Both sigma and eta coordinate systems are pressure based and normalized and are

easy to mathematically cast the governing equations of the atmosphere into a relatively

simple form. The η models have however some advantages over the σ models:

• η models do not need to perform the vertical interpolations that are necessary to

calculate the pressure gradient force (PGF) in sigma models (Mesinger and Janji,

1985). This reduces the error in PGF calculation and improves the forecast of

wind and temperature and moisture changes in areas of steeply sloping terrain.

• Although the numerical formulation near the surface is more complex, the low-

level convergence in areas of steep terrain are far more representative of real

atmospheric conditions than in the simpler formulations in sigma models (Black

1994). The improved forecasts of low-level convergence result in better precipi-

tation forecasts in these areas. The improved predictable flow detail compared

to a comparable sigma model more than compensates for the slightly increased

computer run time

• Compared with sigma models, eta models can often improve forecasts of cold

air outbreaks, damming events, and leeside cyclogenesis For example, in cold-air

damming events, the inversion in the real atmosphere above the cold air mass on

the east side of a mountain are preserved almost exactly in an eta model.
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Figure 2.1 shows the vertical structure of the model including these terrain following η

levels from the surface and up to 850hPa. One dot denotes one grid point in the model.

Figure 2.2 shows the vertical structure from 850hPa to the uppermost level at 10hPa. It

can be seen in this plot that the η levels become flat relative to the underlying orography

in the stratosphere (above 200HPa). The vertical scale of Figure 2.1 is only 1500m,

whereas Figure 2.2 covers 25km of the models atmosphere. Therefore, the underlying

orography on Figure 2.2 cannot be seen. The horizontal grid is a staggered Arakawa

C grid, where the grid points are the mass points (T, q, ps) and the velocity terms are

moved northward (u) and eastward (v) (Mesinger (1978), Arakawa, 1972) .
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Figure 2.1: Vertical structure of the model:

1013hPa to 850hPa
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Figure 2.2: Vertical structure of

the model: 850hPa to 10hPa

The coordinate system in the model is expanded to spherical coordinates, so that the

surface of the earth corresponds to a coordinate surface. The spherical coordinate axes

are (λ, θ), where λ is longitude, θ is latitude. The coordinates in the model grid are

spherically rotated (Saas et al, 2000).

δX = a · cosθ · δλ (2.5)

and
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δY = a · δθ (2.6)

The reason for using spherically rotated coordinates is to position the equator (latitude

0) into the centre of the model domain. With this approach an almost uniform resolution

is achieved and the meridians do not converge too much.

The distance between the two points for which the model equations are solved define

the resolution of the model grid. This grid distance should be chosen in such a way that

topographic features that influence processes of one’s interest are properly resolved. If

this minimum grid distance is impractical because of computational expense, then all

smaller scale processes need to be parameterised.

2.2.3 The Adiabatic and Diabatic Part of the Model

The adiabatic part of the model is computed in the full 3-dimensional model grid. For

numerical stability the dynamical equations are solved by a semi-implicit time scheme

in nearly all models. These semi-implicite time schemes handle the gravity wave terms

with linearised equations. The semi-implicit time scheme allows for at least three times

longer time stepping than a pure explicit time scheme. The reason is that in the

explicit scheme the fastest perturbation propagates with the external gravity wave at

approximately 300m/s. In the semi-implicit solution the advection term is the fastest

explicitly handled propagation term with approximately 100m/s. Whereas the external

and internal gravity waves are handled implicitly (e.g. Haltiner, (1980), Holton, (1979)).

The time step in a semi-implicit scheme is

∆t =
∆x

vc

(2.7)

where vc is the phase speed of the fastest propagating perturbation, which is approxi-

mately 100m/s for the implicit scheme and 300m/s in the explicit schemes. The Speed

of the fastest winds in a model must therefore be less than or equal to the grid spacing

divided by the time step. The three mathematicians named Courant, Friedrichs, and
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Lewy discovered a criterion (CFL) that, if violated, leads to the blowing up of a finite-

difference weather prediction model (Courant, R., 1928). Because of the CFL criterion,

a modeller cannot arbitrarily choose a horizontal grid spacing without also taking into

account the time step of the model.

The diabatic part of the model is computed in a 1-dimensional vertical column. It is

described by using parameterisation schemes. The so-called ”physics” comprises the

processes of latent heat release (condensation, evaporation, sublimation and precipi-

tation), radiation, sub-grid-scale transport of momentum, temperature and moisture

variables down to small scales associated with turbulence. The DMI-Hirlam uses the

CBR Turbulence Scheme for vertical diffusion (Cuxardt et al., 2000), the Soft TRAn-

sition COndensation (STRACO) scheme for convection and condensation (Saas, 1997)

and an adopted Savijärvi-Radiation scheme (Saas et al. 1994). The surface fluxes

(momentum, heat and moisture) are computed with a detailed boundary layer formu-

lation using the Monin-Obukhov Similarity relationship in the traditional way (see e.g.

Garratt, 1992).

2.2.4 Hydrostatic versus Non-Hydrostatic Modelling

Because of the approximations in the hydrostatic models, it is often believed that

they are unsuitable for modelling in high spatial resolution. Because of the accuracy

requirements (see Chapter 1), it is most likely that modelling wind parameters for wind

energy purposes will require high resolution under certain circumstances. The following

is a discussion on the use of a hydrostatic model with a horizontal grid resolution as

small as 0.014◦ for that purpose.

Physick (1988) states that the hydrostatic assumption is applicable as long as the hori-

zontal length scale of the phenomena modelled is greater than the density-scaled height

of the atmosphere ((ρ∂ρ/∂z)−1). In other words, the vertical acceleration is negligible

compared to other terms in the non-hydrostatic equation. Because the density-scaled
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height of the atmosphere (troposphere) is about 8km and the smallest resolvable fea-

tures in a NWP model is 4∆x, the hydrostatic assumption always holds for a horizontal

grid distance ∆x of approximately 2km (Physick,1988).

The physical parameterisation in the model is computed in a vertical column at each

horizontal grid point. Each column is independent of the other columns. The horizontal

coupling of the model variables takes place via the dynamical computations. The

effective resolution is therefore a combination of 4∆x in the model’s dynamical part

and 1∆x in the model’s physical part. In practise, this means that for example wind

and temperature profiles are computed with a 1∆x resolution.

Higher resolution in the grid distance by neglecting the non-hydrostatic residual (total

pressure minus hydrostatic pressure perturbations) can be justified under certain cir-

cumstances. The criterion for neglecting the non-hydrostatic residual then becomes a

function of the horizontal grid distance, the large-scale stability, sub-grid scale heating

and friction (Physick, 1988).

For example, when modelling sea breezes, it has been reported that there is little

difference between hydrostatic and quasi non-hydrostatic simulations at horizontal res-

olutions of 1km (Pielke, 1972 and Orlanski, 1981) down to 300m (Fast and Takle, 1988).

This is because a sea breeze is a slowly developing process without vertical acceleration.

2.2.5 Boundary Conditions

The upper, lower and lateral boundary conditions have to be specified in a hydrostatic

model. Upper boundary conditions should be designed to minimise the reflection of

vertical propagating waves. Therefore, the upper boundary should reach far higher

than the area of interest. The DMI-Hirlam system is a limited area model and has the

upper boundary at 10hPa, whereas in ECMWF’s global model it is at 0.1hPa.

Lower boundary conditions depend strongly on the detail required at the surface. In

general, the model surface is divided into land, sea and sea-ice in each grid point. This

is done through a so-called land-sea mask. Grid points are defined through fractions of
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land and sea/sea-ice or through fixed definitions of pure land or sea, e.g. if more than a

certain percentage of the actual surface in the grid box is land it is defined as land and

vice versa. The benefit of using fractions is that it resembles the reality more accurately.

The disadvantage is that the distribution of land and sea within the grid-box is unknown

and hence can lead to errors in the surface parameterisations. Unless the horizontal

resolution is very high in order to keep the model’s coast line zone narrow, the lowest

model level should be at a height of at least 30m. Sea surface temperature is always

kept constant throughout the forecast and updated from observed values. Roughness

parameters, albedo, thermal properties of snow and ice, land cover and orography are

described in the physiographic input data. Surface fluxes and humidity at the surface

are parameterised.

Lateral boundary conditions to force the atmospheric forecast variables are supplied

from a boundary generating model. Dependent on the application, this can be for

example a global model such as that from the European Centre for Medium Range

Weather Forecasts (ECMWF). For downscaling purposes however the boundary gener-

ating model can be any NWP model that covers a larger area than the area of interest.

In this study the DMI-HIRLAM-E model, which covers the area of Europe was used

and downscaled to an area covering Ireland and parts of the UK.

In addition, DMI’s large scale model (DMI-HIRLAM-G) and ECMWF’s model were

used and downscaled to the same area. At the time of the experiments (2001), Hirlam-

G was run operationally in 0.45◦ horizontal resolution and used lateral boundary values

from ECMWF. Hirlam-E was run operationally with a horizontal resolution of 0.15◦ and

used lateral boundary values from the G-model. The kernel of the models is the same.

A boundary relaxation technique is also applied to interpolate the boundary generating

models’ variables to the limited area model variables linearly in time. The boundary

update frequency depends on the output frequency of the boundary generating model.

Met Centres usually have an update frequency of 6h. In this the boundary frequency

varied from 1h to 6h.



Chapter 2 Resolution Experiments with a Numerical Weather Prediction Model 27

2.2.6 Analysis Techniques

The forcing of the models in this study took place with 3 different analysis techniques.

In the analysis the real state of the atmosphere is adjusted to the model space. In

fact, the analysis is performed by comparing observations from the global network for

atmospheric data (GTS) with a very short forecast. A correction to the ’first guess’ field

of the analysis model is then made from the difference of the observed variables and

the forecasted variables. In this study forecasts from the following analysis techniques

were used:

1. optimal interpolation (OI) - Hirlam-E - observations have effect on a local scale

(circular around the observation)

2. 3-dimensional variational data assimilation (3DVAR) - Hirlam-G - a broader range

of observations can be used and these have effect on the global state of the atmo-

sphere in the 3 dimensional space

3. 4-dimensional variational data assimilation (4DVAR) - ECMWF - a larger time

window of observations can be used that have effect on the global state of the

atmosphere because of the fourth dimension being time

The optimal interpolation approach was developed in the mid 1970’s as the first anal-

ysis technique in numerical weather prediction models (e.g. Lorenc, (1981), Källen

(1996), Lönnberg and Shaw (1987)). This analysis technique was however restricted

to conventional observations from synoptic stations, ship, aircraft and drifting buoys

etc.. The 3DVAR was developed with the purpose of incorporating a broader range of

observation types such as satellite data or radio sounding (e.g. Järvinen et al. (1997),

Gustafsson et al. 2001). The 4DVAR was developed due to an increase in satellite data

and a reduction of radio sounding networks in the late 80’s. The 4DVAR uses a con-

tinuous feedback between observations and model, based on the so called Kalman-filter

technique ( e.g. Courtier et al. 1994, Bouttier et al. 1998, Rabier et al. 2000, Klinker

et al., 2000, Mahfouf et al., 2000).
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In ECMWF for example approximately 500.000 observational data pieces are consid-

ered for the analysis, but only a fraction of this is used (Persson, 2001). For example

pressure observations are used between 50%-90% of availability, whereas satellite ob-

servations or scatteometer winds are used less than 15%. The selection of the relevance

of the observations is the first part. After that, the analysis model undergoes a quality

control and deselects those observations that seem erroneous according to its own state

of the atmosphere. This quality control however also incorporates a danger, namely

that the rejection or acceptance of certain data can also lead to errors in the initial

conditions (i.e. the analysis), that influence the forecast very badly. In ECMWF’s user

guide (Persson,2000) this phenomena is described as ”No analysis is perfect”. In this

documentation five reasons for a bad analysis are given:

1. No data over considerable times and areas

2. Bad data have been accepted

3. Good, but unrepresentative data have been accepted

4. Good data have been rejected

5. Good data have influenced the analysis in a wrong way

The last point is due to non-linear interactions in the analysis techniques that can

lead to unexpected results. These reasons do not necessarily lead to a failure or a bad

forecast, but they can. They can also explain why forecasts can fail to predict certain

weather situations. This happens especially, if these phenomena are not included in

the initial conditions of the model, because the relevant observational data have been

rejected. A well known example of such a failure was the sailing competition Fastnet

Race in 1979, where a hurricane with gale force 10 was not predicted. Five boats

sank and seventeen competitors died in that storm. A more recent example was the

1999 French storm, where an observation from a ship in the Biscay was rejected that

indicated the development of the hurricane. Both events were not forecasted timely.
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It has been a discussion among meteorologist over years what the cause of the failed

simulations of these hurricanes was (personal communication with DMI, 2001). The

discussion also concentrated on the above mentioned 5 reasons, which suggests that it

is obviously not a trivial task to find the sources of errors in a weather forecast.

In the case of Ireland, the most relevant observations are those from ships and aircraft

over the Atlantic and synoptic stations and Radio-sounding stations in the model area.

Because of the exposure to the Atlantic, modelling the Irish area accurately is very

much dependent on a sparse net of observations over the Atlantic and can be subject

to imperfect analysis much more than continental areas.

In this study the OI technique was used in the Hirlam-E model, the 3DVAR technique

was used in the G-model and the 4DVAR technique was used in the ECMWF model.

Note, that the OI technique used in the Hirlam-E model was based on year 2001 and

is no longer used operationally in DMI.

2.3 Wind Power Prediction inside the NWP model

As mentioned in the beginning of this chapter, the experiments have also been used

for the development of power computations inside the numerical model. In fact, a

simplified power production module has been coupled to the NWP model used for this

study.

The first version of the power prediction module is rather simple. It uses power curves

from the turbine manufacturers or from available long-term databases to convert wind

speed into power. The wind speed in the computations is the vertically interpolated

wind speed at turbine height in the model level space. This means that the turbine

height is consistent with the model’s orography and errors that occur as a result of unre-

alistic representation of the model’s orography are filtered away. This simplification has

most effect in hilly terrain, where the model’s orography can differ significantly from the

real orography. In such cases, the real wind profile is effected by local effects that might

not be present in the model system. Such effects can then lead to misinterpretation of
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the results from the numerical model.

The assumption is that the turbine manufacturer’s power curves are valid for a density

of 1.2kg/m3. So far, wake effects are disregarded.

The module that computes energy output E in Joules of a wind turbine from wind

speed u in a particular time period T can be described with

E =

∫ T

0

pwr(u)dt (2.8)

where the power function pwr(u) is a tabulated function E in unit [J/s].

The assumption is that there is no trivial analytical expression for pwr(u). Hence, it

is not possible to calculate its values at an arbitrary point. Instead a piecewise linear

interpolation with equally spaced intervals is used. To smooth the curve between the

velocities (u), a second piecewise linear interpolation is conducted.
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Figure 2.3: Power Curve of a 2MW Bonus Wind Turbine

The variability over time of the wind speed can be significant in hilly terrain for example,

where wind speed changes of 3-15m/s can easily occur over one hour. This variability is

taken into account when converting wind velocity to power output by also interpolating

the inner term. The background for this averaging is to account for the asymmetry in

power output due to increases and decreases in wind speed. This asymmetry can be
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best described by a typical power curve as shown in Figure 2.3. If the wind speed

increases from 3m/s to 5m/s, the power output increases by approximately 6%. If the

wind speed however increases from 7m/s to 9m/s, the power increases by approximately

27%. In this example the power in the range from 7m/s to 12m/s increases with a factor

of 4.5 compared to the range 0m/s to 7m/s.

The tabulated power function that was implemented into the model system can be

written as:

pwr(u) =
1

2
[p̃wr(uvel + ∆uvel) + p̃wr(uvel − ∆uvel)] (2.9)

with p̃wr(uvel) being the power output values of the velocity term uvel plus and minus

∆uvel. ∆uvel is a tunable parameter to account for turbulence and eddies on a larger

scale. The power function is then defined as

p̃wr(uvel + ∆uvel) = c+ · pcy(i+ + 1) + (1.0− c+) · pcy(i+) (2.10)

and

p̃wr(uvel − ∆uvel) = c− · pcy(i− + 1) + (1.0− c−) · pcy(i−) (2.11)

where pcy are the y-values in the power curve table, i− and i+ reflect the different power

values involved in the interpolation of p̃wr(uvel + ∆uvel) and p̃wr(uvel − ∆uvel). The

velocity uvel is vertically interpolated over two levels and is defined as:

uvel = c · ρk+1

√
u2

k+1 + v2
k+1 + (1.0− c) · ρk ·

√
u2

k + v2
k (2.12)

with ρ being the density at hub height, k and (k+1) are the vertical levels in the model,

c is the vertical interpolation coefficient.

c =
zhubheight − zk

zk+1 − zk

(2.13)

The coefficients c− and c+ are defined to
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c− =
(u− ∆u) − pcx(i−)

pcx(i− + 1) − pcx(i−)
(2.14)

c+ =
(u + ∆u) − pcx(i+)

pcx(i+ + 1) − pcx(i+)
(2.15)

where pcx is the x-value in the power curve table, i− and i+ are the indices of pcx for

(u+∆u) and (u−∆u), respectively. They can differ from each other and depend on the

size of ∆uvel, which is solved implicit as a tunable parameter. A reasonable lower limit

of ∆uvel is 0.5 m/s. This corresponds to the variations of wind on the time scale of one

minute. In fact ∆uvel is related to the so-called gust factor, which can be parameterised

from the wind speed and stability. Two effects increase the value of ∆uvel:

- length of the model’s time stepping

- turbulence intensity

2.4 Diagram of the Model System

The following diagram shows the model system as it was constructed for the first part

of the experiments.

Figure 2.4: Diagram of the Model System used for the Experiments
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The squares boxes in the diagram are the operational analysis systems in ECMWF and

DMI, the elliptic boxes are the operational forecasting system in DMI and ECMWF.

The circular box denotes the research experiments carried out in the Irish Study in

delayed mode as hindcasts. Observations only entered the experiments via the opera-

tionally generated analysis fields from the squared boxes.



Chapter 3

The Quality of Wind Power

Predictions from a NWP model

A set of experiments was designed to verify the quality of a typical numerical weather

prediction model when used to predict wind power. The experiment campaign had to

be split into categories and the design kept flexible, because this was the first time such

experiments have been undertaken in this area.

The first experiments were conducted to investigate what kind of errors are most sig-

nificant and on which time horizon are these errors found. The basis for an evaluation

of forecasts is the size of the initial error and the growth rate of the forecast error.

Figure 3.1 is an illustration of these two main error sources in a weather forecast. The

y-axis shows the root mean square error (rms) and the x-axis shows the forecast length.

The first type of error source in a weather forecast can be identified, if a forecast starts

with a relative high root mean square error. This type of error reflects the model’s bias

and is called a local error and is illustrated by the hatched area. If the forecast starts

with a relatively small root mean square error and increases linearly with the forecast

length, the dominating error is referred to as a non-local error. In this case the smaller

local error is illustrated with grey color. It can be seen that the error functions can

cross each other, if the non-local error has a high growth rate.

The structure of the experiment campaign was therefore dependent on the outcome of

initial experiments that focused on these two types of error sources. These experiments

34
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Figure 3.1: Schematic example of forecast error growth as a function of forecast length

were run with a forecast length of 24h and horizontal grid resolutions of 0.15◦ and 0.05◦.

The outcome from these initial runs was that both error sources had significant impact

on the forecast quality. Not only a linear error growth rate with forecast length was

observed, but also a forecast length independent error was observed.

3.1 Experiments to address the Local Error

The initial two experiments suggested that it is necessary that the first part of the

experiments are constructed to address this local error. This set of experiments was

named Irish Study, because the verification of the experiments took place with obser-

vational data from Irish wind farms and wind masts. The error growth of the non-local

error was dealt with in a second part of the experiment campaign and is described in

chapter 4 and 5.
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Exp Model Adv. Bnd Bnd Model FC Time Integration

Name Resol. scheme forcing upd area length period

- [deg] [deg]/m [h] - - [h] [days] [2001]

e300 0.300 Euler HIR-E 3 A 24 59 01.08-03.08

se300 0.300 SemiL HIR-G 3 A 24 59 01.08-03.08

e150 0.150 Euler HIR-E 3 A 24+6 201 10.01-04.19*

sg150 0.150 SemiL HIR-G 3 A 24 59 01.08-03.08

e075 0.075 Euler HIR-E 3 A 24 59 01.08-03.08

e050 0.050 Euler HIR-E 3 A 24 201 10.01-04.19*

g050 0.050 Euler HIR-G 3 A 24 59 01.08-03.08

sg050 0.050 SemiL HIR-G 3 A 24 59 01.08-03.08

ec050 0.050 SemiL ECMWF 6 A 24+6 59 01.08-03.08

e014 0.014 Euler HIR-E 3 B 24 59 01.08-03.08

g014 0.014 Euler HIR-G 3 B 24 59 01.08-03.08

sg014 0.014 SemiL HIR-G 3 B 24 59 01.08-03.08

n014 0.05 to Euler HIR-G 3 to1 A toB 6 201 10.01-04.19*

0.014

g050p 0.050 Euler HIR-G 3 A 6 201 10.01-04.19*

n150 0.150 Euler HIR-E 3 C 6 379 07.01-07.15*

Table 3.1: List of Experiments conducted in the Irish Study. The name of the experi-

ments is based on the used resolution (col. 2) and advection scheme (col. 3). Col. 4

describes the Boundary forcing model (HIR = HIRLAM). Boundary update (col. 6)

was every 3h. forecast length (col 7) was 24h and 6h for e150 and ec050.

To address the local error, the focus of the experiments was on the ultra short range

(1-6h). This meant that the best possible forecast was chosen to be evaluated and

verified. The boundary update was every 3 hours (see Section 2.2.5). Only one case

had boundary update every 6h. The reason for this was that the downscaling of the

forecasts took place from ECMWF analysis data, which are only available at a time
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resolution of 6h.

To summarise, the Irish Study comprised 15 model runs. The different model setups

are shown in Table 3.1. The experiment names give an indication of the setup and

resolution. That is, ”e” stands for Eulerian dynamics, ”s” stands for Semi-Lagrangian

dynamics, ”g” stands for Hirlam-G and ”ec” stands for ECMWF, which indicate that

the downscaling took place from either the Hirlam-G model or ECMWF analysis. The

default was downscaling from Hirlam-E. Most of the experiments covered a two month

period (January to March 2001). Three experiments however covered a 7 month period

from October 2000 to April 2001 (e150, e050, n014). One experiment (n150) covered

a 12 month period from July 2000 to June 2001. The experiments with longer periods

than the three months are indicated with a ” ∗ ” after the date.

3.2 Model Areas

Figure 3.2 to Figure 3.4 show the model areas used in this study. All three areas are

formulated in rotated latitude/longitude coordinates. The south pole is located near

India at coordinate (80,0) in this model domain, because of the rotated coordinate

system. The Area A model domain consisted of 79 longitudinal and 31 latitudinal grid

points for the grid spacing of 0.30◦. It consisted of 158 longitudinal and 62 latitudinal

grid points for the grid spacing of 0.15◦. It consisted of 474 longitudinal and 186

latitudinal grid points with the grid spacing of 0.05◦.

The Area B model domain was only used for the very high resolution experiments and

covers Ireland only. The model domain consisted of 302 longitudinal and 300 latitudinal

grid points for the grid spacing of 0.014◦.

Area C is covering Europe and Greenland and was only used for the one-year experiment

n150 in 0.15◦ horizontal resolution. The area consists of 362 longitudinal grid points

and 366 latitudinal grid points.
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Figure 3.2: Model Area A covering Ireland and most of the UK.

Figure 3.3: Model Area B for high resolution runs over Ireland
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Figure 3.4: Model Area C

3.3 Model Configuration

In the previous section the experiment structure and some technical details of the run

schedules of the 15 experiments was described. In this section details about the model

configuration and input data is described and discussed. The experiments were all

conducted with the same model (DMI-Hirlam). The configuration of the model varied

in the choice of two different numerical formulations for solving the advection term

(dynamic schemes) and in the horizontal resolution of the model grid.

3.3.1 Applied Dynamics Schemes in the Experiments

Two schemes have been applied in the model dynamics:

1. The Semi-implicit Eulerian scheme

2. The Semi-implicit Lagrangian scheme
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For both schemes nested model runs of 0.3◦, 0.15◦, 0.05◦, and 0.014◦ horizontal reso-

lution have been undertaken and compared to observational data. A discussion and

details of the methodology of these approaches will follow in the next section.

3.3.2 Vertical and Horizontal Resolution

All model runs in this study used 32 vertical levels. The approximate height of the rel-

evant model levels (28,29,30,31) for the verification above ground is shown in Table 2.1.

The different horizontal resolutions varied from grid spacing of 0.3◦, 0.15◦, 0.05◦, and

0.014◦. Details of these are shown in Table 3.1.

Case studies also included horizontal grid sizes of 0.075◦, 0.028◦, and 0.019◦. In fact

the case studies were applied mostly at extreme events (e.g. wind speeds reaching

25m/s) and had the purpose to better understand the effects of resolution in such cases.

Because of their non-statistical character these experiments were not recorded explicitly.

They are mentioned here, because they added value to the overall understanding of the

problem, especially to the predictability of extreme events.

3.3.3 Surface Treatment

The earth’s surface is a source and sink for the quantities momentum, heat and moisture.

Any parameterisation of these quantities must simulate the transfer processes within the

atmospheric boundary layer and the ground. In numerical weather prediction models,

the turbulent fluxes are traditionally computed from drag formulae relating the surface

fluxes to the mean states of the surface and the atmosphere at the observation height,

which is typically the lowest model level (Saas, 2000).

Surface Fluxes and Roughness

In the HIRLAM model, the formulation of the surface fluxes follows the Monin Obukhov

similarity theory, which is widely used in numerical weather prediction models. The
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formulations can be found in Saas (2000), such that only the variable with most effect

on the surface winds is discussed here.

The roughness lengths for heat, moisture and momentum are taken to be equal. Ac-

cording to the theory of the planetary boundary layer, the actual values of roughness

depend strongly on the land surface type (Garratt, 1977). The effect of subgrid scale

orography in the model is significant, such that the values of aerodynamic roughness

to describe surface drag in a formulation based on roughness length often need to be

adjusted.

The aerodynamic roughness length z0 is a prognostic variable. For example over water,

Charnock (1955) has hound, that z0 is a function of friction velocity u∗ and gravity:

z0 =
0.032 · u2

∗
g

(3.1)

where u∗ is the friction velocity and g is gravity and z0 is assumed to be ¿ 0.0015cm.

As mentioned above, the roughness length over land is therefore a specified variable. In

the model, it remains constant throughout an integration, even though it is not neces-

sarily constant throughout the domain (Physick, 1988). There are comprehensive lists

of values for various surfaces, (e.g. Pielke, 1984). The friction velocity u∗ is computed

from the boundary layer parameterisation scheme. The sensitivity of the friction veloc-

ity to the accuracy of the surface winds is difficult to quantify when modelling with a

NWP model. This is due to the complexity of the model and its governing equations,

but also because of the horizontal grid size in the model, as this defines the ability of

the model to resolve a given phenomenon. Even though the physical parameterisation

is done in one dimensional columns for each grid box, it is difficult to estimate the im-

pact of changes in the roughness fields. In the HIRLAM model, an algorithm is used,

that makes the aerodynamic roughness proportional to the variance of subgrid scale

orography. The actual values are then computed in the climate field generation (see

next section on physiographic data). This ensures an optimisation of the modelling of

subgrid scale phenomena according to the resolution of the model.
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The sensitivity of different parameterisation schemes (as a whole) on the accuracy of the

surface winds has been investigated and will be discussed in chapter 4 and chapter 5.

Physiographic data

The physiographic data used for describing the lower boundary originates from different

sources. The orography is taken from the GTOPO30 data (1998) and land cover is based

on GLCC (1997), version 2. In the model the aerodynamic roughness z0 is aggregated

from these databases. It is a combination of roughness due to sub grid orographic

influence and vegetation roughness. The aggregation cycle creates monthly roughness

fields, which are utilised with a smooth transition. Over Ireland, the original land cover

data is mainly classified as a blend of fields and woods. This classification is acceptable

when modelling with relatively coarse horizontal resolution, even though not optimal.

For wind energy predictions however, a horizontal resolution of 0.15◦ is too coarse.

At a resolution of 0.15◦ or more, the non-separability of surface types results in large

uncertainties in the aggregated roughness fields. It was therefore necessary to update

the current land cover data with new local high-resolution land surface fields that do

not contain blended classifications.

Additionally, the topography had to be adjusted, because the mountains were too

smooth in the model space. Large differences of up to 150m were found at several

wind farm locations. These differences can result in large local errors of the wind flow.

The fact that most wind farms in Ireland are located at the top of mountains of 300-

500m above sea level, made it therefore necessary to update the topography of these

mountainous areas.

3.4 Observations

The simulations are verified against observations from 5 wind farms in Ireland. Two

farms are located in Northern Ireland (BessyBell and Lendrum) and two are located in
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the South West of Ireland (Milane and Tursillagh). Initial verification has been done

with a site located in the North West of Ireland (Kilronan). The turbines at this site

are placed on a mountain top at 352m above sea level, with lakes to the north and

south. At all other sites hills and mountains at an elevation of approximately 300-400m

above sea level surround the wind farms.

The vegetation at all sites is characterised by grassland with bushes and few trees.

Figure 3.5: Verification Sites in Ireland

In Figure 3.5 the location of the wind farms is included together with other observational

sites used later in this work. The model output that was verified and analysed in this

study comprised wind speed, direction and wind power for the wind farm sites on 5

vertical levels, 4 times a day (0h, 6h, 12h, 18h) with output in half hourly intervals.

3.5 Observation Verification

The statistical tests used for objective analysis of the model runs versus observations

were chosen from standard statistics. The following statistical parameter have been

computed for wind speed and wind power for each wind farm over the period described

in Table 3.1. The following only lists the parameters used in the statistical test. Details

on sample size, location etc. are included in the tables in the result section of the study
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(Section 3.6.3) .

* correlation between modelled and observed parameters (cor)

* variance (var) (also referred to as standard deviation of the mean)

* mean absolute error (mae)

* bias

* root mean square (rms)

* standard deviation (bias corrected) (stdev)

* minima and maxima (min, max)

The formulae of these tests can be found in Appendix A. A discussion of the verification

strategy follows in the next section.

3.6 Methodology of the Applied Approaches

This section gives a more detailed look on the applied approaches and discusses the

methodology and chosen strategy in the context of the work carried out.

3.6.1 Model Dynamics

The semi-implicit Eulerian scheme and semi-implicit Lagrangian scheme were used in

the dynamics of the model. Details of the equations and numerical solutions of these

approaches are well documented and are only discussed qualitatively in the context of

their usage in this work. The Hirlam System’s dynamics is described e.g. in Saas et

al. (2000) or Källén (1996). General details and characteristics of these schemes can

be found in e.g. Krishnamurti et al. (1996), Mathur (1970).

The fundamental difference between an Eulerian scheme and a Semi-Lagrangian scheme

is that the Semi-Lagrangian dynamics is computed by interpolation, whereas the Eu-

lerian scheme uses finite differencing techniques. In the Semi-Lagrangian scheme mass

and wind field is used to compute where a parcel of air originated.

Because the wind flow is not constant and hence air parcels originate from irregular
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grids, the Semi-Lagrangian scheme’s space differencing is done by interpolation along

trajectories of the past at each grid point. The time differencing in the Semi-Lagrangian

scheme is a central differencing from xi− 1
2

to xi+ 1
2
. The interpolation in time and space

causes a damping. Therefore, the Semi Lagrangian scheme is said to have an inherent

damping.

In general, the Semi-Lagrangian scheme is more parameterised than the Eulerian scheme.

It however incorporates a more economic dynamic scheme, especially in the advection.

This is because it can use much longer time stepping in comparison to the Euler schemes.

The accuracy of the scheme is determined by the time-step. Or in other words, the

time step is only limited by the accuracy requirements.

The Eulerian scheme describes the flow in and out of a grid box. No matter how strong

the flow is, only the nearest neighbours are taken into account in the equations of a

particular grid box. The Eulerian scheme is therefore more suited for a local prediction

than the Semi-Lagrangian scheme. It is however a problem that the derivatives are

computed discrete and often in first order accuracy. Thus, a local gradient might not

always be accurate in an Eulerian scheme.

On the other hand, if there is a strong rotation of the flow (e.g. in the centre of a

low) the finite differences of an Eulerian scheme are solved much more accurately than

in an interpolating scheme. In contrast to the Semi-Lagrangian Scheme, a parcel of

air must not be advected further than one grid point in an Eulerian scheme. The

Eulerian schemes are also restricted in their time stepping, due to considerations of

computational stability set by the CFL criterion (see Section 2.2.3).

3.6.2 Orographic considerations

Figure 3.6 gives an overview of the differences in the model’s surface representation.

Cross sections at resolution of 0.30◦, 0.15◦, 0.05◦, and 0.014◦ are displayed. The cross

sections represent a longitudinal section of approximately 200km and are at latitude

53◦ North and from longitude 9.25◦ West to 6.50◦ West. One of the wind farms used
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in the verification is located in that area. The differences in the 4 resolutions are quite

dramatic.

0.30 deg              0.15 deg                  

0.05 deg          0.014 deg                                                 

Figure 3.6: Cross sections at different horizontal resolutions of 0.30◦ (top left), 0.15◦

(top right), 0.05◦ (bottom left), 0.014◦ (bottom right). The area covered is in the North

of Ireland and relates to an east-west line of approximately 200km at 53◦N and 9.25◦W

to 6.50◦W . The vertical scale is approximately 530m above sea level for the 0.014◦plot,

350m a.s.l for the 0.05◦, 200m a.s.l for the 0.15◦ and 180m a.s.l. for the 0.30◦.

Note, that the steepness of the orography in the lower right plot is slightly distorted,

because the cross section covers around 143 grid points. Nevertheless, each mountain

in the plot contains about 10 to 15 grid points of approximately 1.4km. Note, that

in the high resolution 0.014◦, the two highest peaks in the center of the plot merge to

form one peak in the 0.05◦ resolution. In the 0.30◦ plot the peaks are also smoothed

out, such that the mean peak is reshaped and found at a different location as in the

high resolution plots. This shows that only the large scale weather is taken into account

when modelling at such a resolution. Whereas already in the 0.15◦ model the mountains

are at the correct location and the lack of orographic features can be partly solved by

increasing the roughness and using model levels that reflect the height of interest.
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Figure 3.7: Fraction of Land and Sea in

different Model Resolutions. Left up-

per plot is with a horizontal Resolution

of 30km, right upper plot is at 15km,

left lower plot is at 5km and right lower

plot is at 1.4km

Figure 3.8: Surface Geopotential in dif-

ferent Model Resolutions. Left upper

plot is with a horizontal Resolution of

30km, right upper plot is at 15km, left

lower plot is at 5km and right lower plot

is at 1.4km

Figure 3.7 and Figure 3.8 show fraction of land and sea and surface geopotential for

Ireland in the same horizontal grid spacing as Figure 3.6. The left upper plot shows

0.30◦ ( 30km), the right upper plot shows 0.15◦ ( 15km), left lower plot shows 0.05◦

( 5km), and the right lower plot shows 0.014◦ ( 1.4km).

Most significant is the difference between 15km and 5km, whereas the difference be-

tween 5km and 1.4km is not so significant. It is also worth noting that in the coarser

resolutions (30km and 15km), Ireland is merged with Scotland in the North. The

Shannon estuary in the Mid West of Ireland for example is also invisible in the coarse

resolution. Lough Neagh in Northern Ireland only appears as partly land and sea in

the 15km resolution and not at all in the 30km.
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Naturally, the question arises whether it would not be beneficial to also use increased

resolution in the climate files (physiographic data) when modelling in the coarse reso-

lution and thereby resolving the surface features better.

The problem with such an approach is that a numerical model cannot resolve sharp

vertical changes without causing instabilities for two reasons:

Physically: gradients that are build at the top of the mountain with their surrounding

become very inaccurate because of the downhill slopes.

Numerically: two-grid waves cannot be solved with less than 2 grid points and in

mountainous regions, the orography changes need to be proportional to the grid

size.

A smaller grid spacing could therefore be necessary in areas with complex terrain and

in mountainous regions. Especially, if the tendency in the future is to build larger

wind farms, it is most important to be able to accurately capture these small scale

phenomena in the short forecasts of 1 to 6h.

Since the orography in the coarse resolution cannot be increased over a certain limit,

the future naturally points toward modelling in as high resolution as possible. The

drawback of such an approach is the computational cost. In fact, the difference between

running a model with 1.4km and 5km grid spacing is an increase in CPU-time by 20.

If this is scaled for 15km and 5km grid spacing, the computational costs of modelling

with 1.4km in comparison to 15km grids is therefore approximately 50 times higher.

The Irish Study therefore also aimed to study the requirements for reaching higher

accuracy in the modelling of wind speed and to investigate the practical implications

for achieving this goal.

3.6.3 Verification Strategy

The interpretation of model results is not trivial. While there are commonly used

statistical tests, the interpretation of these is not always straight forward and in some
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cases it can even lead to wrong conclusions. Especially, when applying test in an area

where there is not much experience. Thus, in any evaluation process care has to be taken

in the interpretation of the results. For example when evaluating different resolutions

for a specific parameter such as wind speed, the high resolution simulations often do

not show any improvement in the statistical tests (e.g. rms) relative to the coarser

resolution. In particular peaks of high wind speed, which are significant for the power

predictions often produce large errors in the high resolution statistics.

As an example, it was observed in Ireland that only very high resolution models can

capture wind peaks of more than 20m/s. But exactly these peaks create large errors in

the statistics, if the model has a phase error of one or more hours. This is because the

model fails twice, once for not predicting it, when it occurred and once for predicting

it when it did not occur.

Hence, the verification of the model output when using a NWP model for wind power

prediction is an aspect in the forecasting process that requires the development of new

strategies.

In meteorology there are two common methods of objective verification to analyse model

output. This is:

1. observation verification

2. field verification

The advantage of field verification versus observation verification is that the local effects

do not disturb the verification. Field verification can also take place in areas with few

permanent observational sites such as over sea. That means, that computed fields from

the initial state (analysis) are verified. The summation of areas also provides a more

robust estimate of the forecast quality.

The benefit of field verification becomes clear if areas rather than single sites are of

importance, which is often the case for utilities and system operators.

It has also been a tendency in the past that wind power models were ”upscaled” from

single sites to areas of interest. This happened for various reasons and the smoothing
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effect of the upscaling from a finite number of points to an average over an area was

one of them.

In the past this was a necessity, because the conversion of wind speed to wind power

was handled outside the numerical weather prediction models. Even though the NWP

models work in field space, wind speed and other parameters have been extracted for

specific sites to be used for upscaling by linear models to larger areas. In such cases,

verifying forecasts against observations becomes quite difficult, because the errors are

not transparent.

Even though field verification has quite some advantages, traditional observation ver-

ification has been carried out in the Irish Study. Whereas wind speed and direction

would have benefited from the field verification, the verification of wind power and the

evaluation of error sources in the wind to power computations was not possible on a

field basis, because the observational data at the Irish sites were point specific rather

than area integrated.

For this reason the field verification is only suitable for areas, where a large amount of

individual turbines are dispersed over areas, like the western part of Denmark or the

northern part of Germany.

3.6.4 The Wind Power Prediction approach

The first two experiments in the Irish Study suggested to use high horizontal resolution

and short boundary update frequency for the power predictions and thereby include as

many small scale features as possible. Therefore, the experiments for testing the power

predictions inside a NWP model were chosen on a horizontal grid of 0.014◦ and hourly

boundary update frequency was achieved through a two level nested model system with

0.05◦ resolution in the outer grid. Wind speed, wind direction and wind power were

written out at each time integration step. This setup was necessary to also evaluate

the effect of using instantaneous values rather than averaged values over half an hour

or one hour.
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Other approaches (e.g. Mengelkamp,1988) usually compute the energy output with the

velocity cubed, a frequency distribution and a power coefficient. These approaches are

different to the above approach, where the velocity is interpolated horizontally over grid

points, interpolated vertically over levels and then converted directly to energy output

with a tabulated power curve. This output is for specific points, i.e. the horizontally

interpolated wind velocity is at the wind farm location for which a power curve ex-

ists. However, the output does not have to be for single sites. It can also be used for

areas/fields, because the energy output is computed from a tabulated function of the

power curve. That means, if an area integrated power curve exists, the power compu-

tations can also be conducted with area integrated wind velocity. The idea behind it is

that the power curve itself takes care of the non-linearity in the conversion from wind

velocity to power.

Another advantage is that any improvement to the power curve, such as statistical

corrections can easily be added without recoding the module. Efficiency in the com-

putations is also ensured, because the table lookup procedure of the energy output by

piecewise linear interpolation of the wind velocities is computational efficient and sta-

tistical improvements do not need to be computed inside the numerical model. Thus,

the overhead for the power computations in the model is bearable.

3.6.5 Statistics for and in Power Curves

The idea of a simple power module inside the NWP model is to build a skeleton that

can be complemented with other modules and improved over time and thereby offers a

sustainable solution. The goal was to create a module that is simple and independent

of observations or statistical corrections in the event that these are not available. It

should also focus on a physical description wherever possible. In that way the power

prediction tool becomes more flexible, easier to implement into other models and areas,

easier to maintain and less dependent on local observations.

In fact, the basic idea should be followed by the development of a more sophisticated
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description of the power curves. As described above, in this first approach, standard

power curves from the manufacturers have been used. A better parameterisation of

the power curves is to develop an efficiency parameterisation for the turbines, using

the most relevant secondary effects on the power production such as wind shear, cloud

water, turbulent kinetic energy, stability of the atmospheric boundary layer etc. The

HONEYMOON project (A High resOlution Numerical wind EnergY Model for On- and

Offshore using eNsemble predictions) is in fact following this idea in a 2 year project

(2003 to 2005) funded by the EU fifth Framework Program (Contract No. ENK5-CT-

2002-00606).

Measured power curves always show an uncertainty. This is because air density, turbu-

lence, vertical wind shear, a wet rotor or a difference in the direction between the rotor

and the wind affects the efficiency of the turbine. The mean wind speed is however the

most important parameter for power predictions. The other parameters are also not

more difficult to predict than the mean wind speed in the NWP model. In fact, density

and vertical wind shear are modelled more accurately than wind speed in current NWP

models. Thus, it is suggested to include these parameters in the future prediction of

power, because they can explain up to 15% of the power prediction for stronger wind

speeds.

Mean wind speed with density correction is in the future referred to as a primary effect

and all remaining effects that have impact on the power production as secondary effects.

Secondary effects are for example a sudden change in the wind direction due to a frontal

passage. The preliminary studies of the observations of power and wind used in this

work indicated that the effect is not negligible. In some cases the secondary effects

also require a significantly higher time resolution than one hour. That is, a sudden

change in the wind direction requires a time resolution of the order of minutes to allow

for a proper parameterisation of the turbine efficiency. Inclusion of all the secondary

effects with one hour NWP data time resolution is however impractical. The required

time resolution for the primary effects is less critical than for the secondary effects.

Therefore, the focus on in this study was on the primary effects.
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3.6.6 Time resolution in the Wind Power Prediction

Theoretically high time resolution is a requirement for accuracy and consistency in the

wind energy forecasting. From a prediction point of view, it also seems most beneficial

to use high time resolution of the NWP data in the power prediction. This means that

energy output is computed every time step and written out in accumulated form every

hour. Then, these calculations can be used to take primary and secondary effects into

account in the power production. Improvements in the NWP model system will in this

way also improve the wind power computations.

Preliminary experiments showed that there is a significant difference between the power

from hourly averaged wind speeds and instantaneous wind speeds for certain weather

pattern. It was also visible that linear interpolation over one hour under certain weather

patterns is a very poor approximation. Predicted primary power contribution can differ

up to +/- 700KW for a 5000KW farm, although the predicted average and instanta-

neous wind speed differ only +/- 1 m/s (Moehrlen et al., 2001). If an accuracy of 10%

or more is required, these effects have to be taken into account by computing instan-

taneous as well as averaged wind speed. Only then can the power predictions benefit

from the high time resolution and further improvements in the NWP models.

3.6.7 Advantages of computing Wind Power inside the NWP

model

The strategy of having the prediction of power inside a NWP model ensures a gradual

improvement in time on both wind speed and energy output. Such a strategy provides

the basis for longterm developments. The main advantages of this approach are:

• the possibility of modelling with high time resolution

• to parameterise the energy output and turbine efficiency on a physical basis

• to have a sustainable development and test-bed for wind power predictions
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• improvements in the NWP model have also positive impact on the wind energy

predictions

3.6.8 A Note on the Relationship of Synoptic Scale Forcing

and Wind Power Generation

The challenge of this work was to determine an optimal combination of the required

resolution to simulate local effects and the required model domain to capture large scale

flow.

Another way of formulating this is that it is important to forecast atmospheric fronts

accurately to reduce situations where a front arrives earlier than predicted. In such a

case, an excess of electricity would occur that could have technical and market impli-

cations in the period from the actual arrival to the predicted arrival. A delayed arrival

of a front (relative to the forecasts) would lead to a deficit of electricity, high prices

for balancing power or even instabilities in the grid. Applied to areas like Ireland this

means that the more directly a low hits an area, the narrower and sharper the fronts

are, and the more sensitive the wind energy forecasts.

The goal was therefore to understand the sources of errors that cause phase errors, to

find methods to solve the problems associated with the errors and possibly to reduce

phase errors to an acceptable limit for wind energy. However, it should be pointed out

that in conventional weather prediction an acceptance limit of phase errors of at least

three hours exists in todays weather forecasting of more than 6h ahead. Whereas a

phase error of thirty minutes in wind energy forecasting can already be problematic.

In Ireland for example, the governing forces of the wind are large scale pressure gradients

due to highs and lows propagating eastward in the Atlantic. The Irish area is also

characterised by a weak diurnal cycle. The background of the weak diurnal cycle

is a combination of high average wind speed, a high coverage of grass with a high

roughness length and the fact that Ireland is surrounded by deep water with a moderate

temperature. As a consequence, related atmospheric phenomena, such as sea breezes,
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also play a minor role. This does not mean that there are no local weather effects.

On the contrary, the orography triggers meso-scale weather particularly under unstable

conditions. But, even though these processes are important for wind energy in an area

like Ireland, the effects are a consequence of large scale weather forcing. Therefore,

both the large scale and small scale effects have to be simulated with the same model.

This means that the model area must be large enough to simulate the large scale forces

and also have sufficient resolution to incorporate the orography with a relatively high

accuracy.

To summarise, an optimal prediction system should be able to forecast the development

of lows and fronts on a scale of several thousand kilometres. On the other hand the

required area grows with required forecast length and the resolution is a function of the

complexity of the terrain. This combination makes forecasting difficult, computation-

ally demanding and sets restrictions on the applicability of certain combinations.

3.7 Observation Verification at Wind Farms

In this section and the following sections, the results of the Irish Study are presented.

In the first section one reference wind farm is verified and analysed. In the next section

the results of four other wind farms are compared with those from the reference farm.

The accuracy with which certain weather parameters can be predicted from a NWP

model is strongly related to the large scale flow patterns and the terrain features that

influence the flow. The complexity of the terrain, the model’s resolution and domain

size thus have direct influence on the accuracy of the forecasts. The results are for this

reason interpreted in form of a discussion of the error sources in the prediction of wind

velocity and wind power.
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Exp model mean variab max bias mae rms cor sample
level [m/s] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s] size

obs - 8.07 3.94 25.07 - - - - 1440
e300 29 8.27 3.79 24.00 -0.244 1.727 2.418 0.805 1422
s300 29 - - - - - - - -
e150 29 8.12 4.01 23.00 -0.320 1.788 2.471 0.808 1416
g150 29 8.35 3.79 22.30 -0.040 1.623 2.319 0.820 1434
e075 30 8.26 4.05 22.10 -0.402 1.881 2.525 0.800 1422
e050 30 7.85 3.75 21.90 0.052 1.914 2.599 0.771 1434

ec050 30 8.16 3.88 20.70 -0.337 1.681 2.356 0.820 1326
g050 30 8.02 3.75 21.20 -0.091 1.602 2.267 0.828 1440
s050 30 7.52 3.87 22.50 0.383 2.207 3.132 0.682 2868

sg050 30 7.93 3.77 21.00 -0.066 1.616 2.286 0.824 1422
e014 30 8.29 4.16 22.30 -0.432 1.858 2.508 0.812 1417
g014 31 7.98 4.24 24.10 0.114 1.749 2.396 0.825 1434

sg014 30 8.61 3.91 23.40 -0.848 1.854 2.487 0.804 1248

Table 3.2: Wind Velocity Statistics from the forecasts started at 00h.

3.7.1 Verification of Wind Speed at a Reference Wind Farm

The verification focused first on the detailed verification of wind velocity for one ref-

erence wind farm. The statistics comprised 24-hour forecasts started every 6 hours.

Thus, there are always four forecasts valid for any fixed point in time.

In Ireland most of the wind farms are located near the West coast or in hilly regions of

300m to 600m above sea level. Due to the complexity of the terrain at the location of

the reference wind farm, the verification of 24h forecasts showed that it is necessary to

first focus on and verify the capability of the model to simulation the weather at specific

sites rather than evaluating the predictability over a long time horizon. Therefore, the

second part of the verification was carried out on the very short range (1-6h) for four

additional sites.

Impact of Model Levels and Forecast Times

A summary of statistical tests carried out for the 15 experiments at the reference wind

farm Kilronan is given in Table 3.2, Table 3.3 and Table 3.4. All tables refer to wind

velocity in unit [m/s]. Note, that what is referred to as variability (variab) in this
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work is often also referred to as ”standard deviation of the mean”. The equations of

all statistical parameters can be found in Appendix B. The short names in the column

”Exp” are defined according to the experiment description in the previous chapter and

Table 3.1. The statistical tests were analysed on 5 vertical levels (28,29,30,31,32) and

at four different forecast lengths (00h, 06h, 12h and 18h) (see Table 2.1). Measurement

information of the observational data can be found in Appendix C.

In Table 3.2 the results from a conventional set of statistical parameters is shown from

the 00h forecast at the level that corresponds to the hub height of the turbines. As

discussed in the previous chapter this height can be different from the actual hub height

of the turbine and varies with model resolution and location of the wind farm. The

mean, variability and maximum are also shown for the observations in unit [m/s].

The results in the table show that there is no significant difference between the coarse

resolutions (0.3◦) and the high resolutions. The mean differs only approximately 6%-7%

from the observed mean. The same applies to the variability (variab), mean absolute

error (mae), bias, root mean square error (rms) and correlation (cor). The maximum

values are consistently higher in the high resolution 0.014◦ runs than in the 0.5◦ and

0.15◦ runs, but not so for the 0.3◦. The lack of a clear pattern suggested that more

statistical tests needed to be carried out. If it is true that there is no difference between

the forecasts with a grid size of 0.3◦ and 0.014◦, the main error sources would be a

result of large scale errors. To investigate this statement further, the statistical analysis

was extended to compare the results at all forecast lengths (0h,06h,12h,18h) and all 5

relevant vertical levels (28,29,30,31,32).

This graph has no statistical significance, but gives a qualitative impression of the

difficulty in the interpretation of the statistical results. It is based on the results from

Table 3.3 and Table 3.4. In fact, it averages the results from the best error statistics

over each forecast length. Table 3.3 then shows the results from the comparison of

different forecast lengths when using an average over the five lowest vertical levels. It

was felt that applying a smoothing effect by averaging over the vertical levels could be

used to further investigate the dependence of the model on the horizontal resolution.
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Figure 3.9: Graphical Summary of the statistics for the Kilronan wind farm. The results

from Tables 3.3 and 3.4 are averaged over the different horizontal model resolution of

the experiments, such that each point in this graph is an average over 2 x the number

of experiments with the same resolution.

Figure 3.9 gives a graphical overview of this investigation.

The first column shows the forecast length where the models performed best in av-

erage in the statistical tests consisting of mean, variability (variab), minimum (min),

maximum (max), mean absolute error (mae). This column is referred to as ”stat”. In

the two columns following, the forecast lengths with best results in mean average error

(denoted as mae∗) and correlation (cor∗) are given, where ”all” indicates that there is

no difference in any. The column ”fclen” indicates the forecast length for which the

results in the remaining columns are displayed. The results show little difference to

the previous table and confirm the hypothesis that there is little dependence on the

resolution in the long term statistics. It is interesting to note that column five (fclen)

shows that half of the 18h-forecasts performed better than the shorter forecast lengths.

This is an indication that the models needed time to adapt to the analysis increments

(initial conditions) before being in balance again. Especially in higher resolution, the

large scale analysis can have a negative effect on the model’s balance and thereby also
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Exp stats mae∗ cor∗ fclen mean variab max bias mae rms cor
. [m/s] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s]

obs - - - - 8.07 3.94 25.07 - - - -
e300 0 0 6+12/18 0 7.63 3.60 21.34 -0.40 1.58 2.26 0.81

se300 6 6+18 6 0 7.18 3.45 18.77 -0.78 1.56 2.26 0.82
e150 0 0 6+12/18 0 7.86 3.82 22.26 -0.43 1.63 2.22 0.82

sg150 18 6+18 all 18 7.65 3.78 20.00 -0.36 1.58 2.16 0.83
e075 6 18 6+18 18 8.05 3.96 20.44 0.29 1.83 2.30 0.80
e050 0 0 all 0 8.03 3.76 22.02 -0.05 1.91 2.50 0.78
g050 18 0 18 18 8.12 3.86 19.72 0.11 1.57 2.13 0.84

sg050 all 0+18 18 18 8.03 3.85 19.88 0.08 1.54 2.11 0.84
ec050 12+18 18 18 18 7.92 3.90 20.90 0.21 1.57 2.12 0.83
g050p all all all all 7.77 3.73 20.31 -0.09 3.52 4.53 0.84
e014 12 12+18 0-12 12 8.20 4.20 22.20 0.21 1.88 2.30 0.81
g014 0+18 12+18 all 12 8.46 4.22 23.32 0.44 1.79 2.19 0.83

sg014 6 0+6 all 6 8.07 4.11 22.00 0.24 1.85 2.32 0.80
m014 - - - - - - - - - - -
n014 0-18 0-18 0-18 0-18 7.62 3.90 20.02 -0.40 1.63 2.27 0.74

Table 3.3: Statistics from time horizon (h) with best results using an average over
model levels

Exp stats mae∗ cor∗ fclen mean variab max bias mae rms cor
[m/s] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s]

obs - - - - 8.07 3.94 25.07 - - - -
e300 29 29 29 29 7.95 3.62 20.95 -0.07 1.67 2.36 0.80

se300 28 28 30-32 28 7.82 3.46 18.56 0.18 1.88 2.61 0.76
e150 29 29 29 29 8.11 3.85 21.92 0.08 1.62 2.18 0.83
g150 29 29 29-32 29 8.12 3.76 20.40 0.04 1.56 2.16 0.83
e075 29/30 31 30 30 7.99 3.82 19.65 0.14 1.77 2.29 0.80
e050 29/30 29/30 30-32 30 7.75 3.51 19.45 -0.32 1.73 2.35 0.80
g050 30 30-32 30-32 30 8.01 3.73 20.20 -0.07 1.50 2.11 0.84

sg050 30 30/32 29-32 30 7.91 3.74 20.17 -0.12 1.47 2.08 0.84
ec050 28/30 30 29-32 30 7.98 3.72 20.90 -0.00 1.60 2.31 0.80
g050p - - - - - - - - - - -
e014 30 30 30 30 8.11 4.11 22.00 0.08 1.78 2.24 0.82
g014 30/31 30/31 29-32 31 7.87 4.06 22.17 -0.21 1.71 2.17 0.83

sg014 30 30 30 30 7.87 3.96 21.90 -0.05 1.85 2.41 0.79
m014 30 30 29 30 8.22 4.10 25.10 -0.20 2.05 - 0.87
n014 29 30 30 29 8.58 4.00 23.00 -0.50 2.29 - 0.83

Table 3.4: Statistics from levels with best result using an average over time horizons
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on the quality of the small scale features taken into account in the high resolution.

Table 3.4 shows results for different levels using an averaging over the forecast length.

The structure of the table is the same as for Table 3.3, except that the column refers

to levels, where the models performed best in average. In Meteorology the averaging

over forecast lengths is often referred to as a lagged time average poormans ensemble

approach. The advantage of such ensembles is that part of the uncertainty in the initial

conditions is eliminated because of the smoothing effect.

It can be observed in Table 3.4 that there is a pattern in the different resolutions for

the levels that fit best to the observations. For the 0.30◦ and 0.15◦ grid sizes the best

results are obtained at level 28 and 29, which is at heights of approximately 190m and

120m, respectively. It indicates that the orography is too smooth and the location of

the turbines is too low in the model space. This changes with higher resolution. When

using 0.05◦ horizontal grid spacing the highest correlation and lowest mean absolute

errors are found in level 30 (approximate height above ground of 69m). And similar

when using 0.014◦ horizontal grid spacing, the highest correlations and lowest mean

absolute errors are found at levels 30 and 31 (see Table 2.1).

Hence, in the higher resolution, the height above ground resembles the actual height of

the turbines. In the coarser resolution this is not the case. Heights above ground in a

NWP model depend on the pressure and the orographic representation. In the model

space the height of a hill or mountain can therefore be quite different from reality. This

means that the height (above ground level) of a turbine can also differ significantly

from the corresponding geopotential at a model level. For that reason, care has to be

taken when applying wind speeds from NWP models for external wind power models at

specific heights (e.g. turbine hub height). For example in the case of the Kilronan wind

farm the model level that corresponds to the turbine hub height was found to differ

up to 30% from the actual hub height of the turbines. If this is known, an orographic

correction to the input data should be computed.

It has also been observed that in most cases the correlation is insensitive to the height

of the model levels. It only determines the extent to which values of two variables
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are ”proportional” to each other. The variability is a much better measure for the

goodness-of-fit and confirms that forecasts modelled with higher resolutions are more

closely related to the observations. The variability of the wind speed is about 10%

lower in 0.3◦ resolution than in 0.14◦ resolution.

The difference between Table 3.2 and Table 3.4 is that the latter is averaged over 4

different forecast lengths. The differences turned out to be rather small. There was

almost no parameter that benefited from averaging the forecasts over time. A small

improvement was found in the error statistics (mae, rms). There was no difference

found however in the mean, variability or correlations by using this approach.

To summarise, the highest correlation between observations and model output was

found in the downscaled 0.5◦ resolution runs and the 0.014◦ resolution run with bound-

aries from the G-model. On average the coarse resolution models perform as well as

the high resolution models in the bias, rms and mae error statistics. For example the

downscaled g150 runs from the G-model and the downscaled Eulerian e150 runs are

superior to all high resolution runs (e014,g014,sg014) . Only the g050 downscaled from

the G-model is superior to the coarser resolution runs.

3.7.2 Verification of Wind Speed at Wind Farms

This section deals with the results of the statistics from five Irish wind farms. The

statistical tests were conducted for wind velocity in units [m/s] and wind power in

units [kW]. These included mean, variance, maximum and minimum, mean absolute

error (mae), bias, variability (variab), root mean square (rms) error and correlation.

The statistical tests have been conducted to verify the forecast quality of the numerical

weather prediction model and not to compare selected sites with each other. This is

the reason for using the largest possible set of data for each wind farm and not a small

period where data is available for each individual wind farms. The results for each

individual wind farm that was verified are also placed in Appendix D for that reason.

Hence, the following evaluation of the wind farms will focus on the consequences of the
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results for the prediction accuracy rather than comparing the ”weather” at different

locations. In fact, the result of a direct comparison of individual wind farms would be

that the ”weather” is different at the different sites.

The purpose of this evaluation is however to investigate the error sources of the numer-

ical weather prediction model at different sites by comparing observational data with

forecasts. It was important to find a pattern for the local error as described in the in-

troduction of this chapter (see Figure 3.1) and to ensure that errors are not coincidental

errors that arise under the specific local conditions of a site.

It was observed at all sites that the modelled mean wind velocity and mean wind power

are lower than the observations mean velocity or mean power. Except in Lendrum,

where the g014 and n014 modelled mean wind power was slightly higher than the

observed mean. This is also true for the variance of the variables (wind power and

wind speed). In Lendrum and Bessy Bell the variability of wind speed and wind power

is closest to the observations for the experiments se300 and s300. At Milan Hill and

Tursillagh there is higher variability in the forecasts from the n014 and g014 experiments

than in the observations, whereas all other experiments show lower variability than the

observations. The correlation of modelled wind speed to observed wind speed was

found to be highest (0.87) for the e300 and se300 experiments at all farms (Bessy Bell,

Kilronan, Lendrum, Milan Hill and Tursillagh). In wind power space the correlation

of modelled wind power to observed wind power is higher in the higher resolution runs

for all wind farms except the Tursillagh wind farm. The analysis of the reference farm

is confirmed by the analysis of these four wind farms. That is, the high-resolution

experiments do not show a consistent statistical improvement in comparison to the

forecasts in coarser resolutions. This result is consistent for all five wind farms for both

wind velocity and wind power. A subjective analysis however showed in all cases that

only the forecasts in higher resolution can capture terrain features correctly.
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3.7.3 Summary of the Statistics at the Wind Farms

• The results indicate strong sensitivity to the models horizontal grid spacing, the

surface representation and model area

• Long term error statistics (rms and mae) show almost the same results for all

model resolutions, but only the high resolution model can capture the small scale

weather phenomena

• The physical height of the model levels that represent the hub height of the turbine

depend on the model resolution. When modelling at coarse resolution the effective

hub height of the turbine in the model needs to be calculated.

• The lagged average poormans ensemble forecasts did not improve the forecasts, i.e.

there was no significant benefit in averaging the forecasts with different forecast

lengths

• In complex terrain peaks of high wind speed (> 20m/s) can only be simulated

reliable with model resolutions of 0.05◦ or higher

• The models bias and maxima can only be evaluated in the high resolution. In the

coarse resolution (e.g. 0.30◦) large biases can be due to bad representation of the

orography.

• It is questionable whether and when the cost of high-resolution deterministic

forecasts can be justified

3.7.4 Frequency Distribution at a Reference Farm

Most of the experiments were carried out over a period of 3 months. For such a short

period a Weibull distribution will not provide useful results. Instead, a comparison of

the frequency distributions of the different model resolutions has been carried out. Only

standard frequency parameters and distributions of the experiments were computed and
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observations e014 g014 g050 ec050 e150 se300

29% 43% 48% 47% 44% 49% 53%

Table 3.5: Frequency distribution of Wind Power for the Reference Farm Kilronan in
the range 0-500kW

interpreted by subjective evaluation. These results revealed that the higher resolution

runs are much more in line with the observations.

In contrast to the standard statistical test, the frequency parameters and distributions

demonstrated a linear deterioration of the goodness-of-fit to the observations from 0.30◦

to 0.014◦ resolution. Figure 3.10 shows the frequency distribution at the reference park

Kilronan of wind power (on the left) and wind speed (on the right) over the three month

period January to March 2001. Six experiments (e014,g014,g050,ec050,e150,se300) with

4 different resolutions (0.014◦, 0.05◦,0.15◦,0.30◦) are displayed. The peak production

of the wind farm is 5000kW. The distribution of wind power has been enlarged to the

range of 0% to 15%. The first range of 0-500kW can therefore not be seen fully. In

the 0-500kW range the modelled frequencies differ from the observations. This range

seemed to be dominating for the power production of the wind farm. The shape of the

wind power distribution is therefore skewed to the left with many values in this lower

range. The percentages are displayed in Table 3.5.

Frequency parameters were calculated for 10 resolutions at all 5 wind farms. Because

the behaviour and results are similar at all sites, only the reference farm (Kilronan)

is presented and discussed hereafter. In Table 3.6 and Table 3.7 the results are listed.

The tables in Appendix D contain the results for the four other stations.

The mean of the distribution shows that the forecasts from the coarser resolution runs

deviate more from the observations than the forecasts from the high resolution. Thus,

the smoothing effect in the coarser resolution becomes apparent in this way.

The skewness refers to the symmetry of the distribution. The formula can be found

in Appendix B. The skewness parameter confirms that the shape of the wind power
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Exp Mean Skewness Kurtosis P.25 P.50 P.75
[kW] [-] [-] [kW] [kW] [kW]

pwr.obs 1834.27 0.54 -0.94 520.00 1508.00 2977.00
e014 1814.73 0.71 -0.67 547.07 1385.03 2801.02
g014 1845.14 0.66 -0.69 607.83 1480.83 2834.08

se014 1734.72 0.79 -0.53 533.05 1287.07 2685.38
ec050 1670.36 0.80 -0.44 417.50 1284.31 2534.19
se050 1632.04 0.77 -0.47 395.07 1269.44 2621.84
g050 1625.40 0.83 -0.41 425.78 1188.18 2597.32
e150 1575.74 0.96 -0.18 412.36 1057.61 2398.43
g150 1495.06 0.89 -0.26 265.07 1093.03 2430.80
e300 1372.68 1.08 0.30 271.13 913.14 2112.91

se300 1201.62 1.05 0.31 218.29 854.46 1848.02

Table 3.6: Statistical Parameters from the Wind Power Frequency Distribution for the
Reference Farm Kilronan

Exp Mean Skewness Kurtosis P.25 P.50 P.75
[m/s] [-] [-] [m/s] [m/s] [m/s]

ws.obs 7.92 1.01 1.53 5.27 7.33 9.90
e014 8.07 0.51 -0.22 4.83 7.62 10.75
g014 8.22 0.61 0.18 5.02 7.83 10.88

se014 7.85 0.54 -0.11 4.74 7.45 10.46
ec050 7.93 0.57 -0.09 5.13 7.43 10.37
g050 7.80 0.60 -0.13 4.97 7.12 10.45

sg050 7.73 0.61 -0.11 4.86 7.07 10.27
e150 7.42 0.77 0.22 4.46 6.79 9.75
g150 7.19 0.64 -0.21 4.41 6.38 9.66
e300 7.07 0.68 0.05 4.47 6.42 9.32

se300 6.38 0.61 -0.31 3.91 5.79 8.55

Table 3.7: Statistical Parameters from the Wind speed Frequency Distribution for the
Reference Farm Kilronan
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probability density function (pdf) is weighted to the left with a long tail toward the

larger values (see also Table 3.5). The wind speed pdf is more bell-shaped than that of

wind power, but also weighted to the left (see also Figure 3.10).

The difference in shape between wind speed and wind power can be explained by the

fact that the highest probability is between 6 to 8 m/s, which is at the more flat part

of the power curve. The difference between observation and modelled wind power at

the different resolutions is increasing with coarser resolution and reaches almost double

the values in the 0.30◦ resolution. This could be interpreted such that the coarser

resolutions are weighted much more toward the smaller values in power space. Hence,

there is a negative bias in the wind speed. This negative bias however is not present

in the skewness values for wind speed. The modelled wind speeds have a lower density

(up to almost 50%) toward the smaller values than the observed wind speeds.

The kurtosis values for wind power confirm the hypothesis that the distribution of

the coarser resolution forecasts is more peaked than the observations and the higher

resolution forecasts. The kurtosis refers to the flatness of the distribution in relation

to the normal distribution. The positive values in the 0.3◦ resolution of wind power

therefore indicated an increased peakedness with heavier tails than all other resolutions

and the observations. The wind speed values behave similar to the shape parameter,

but around the zero value. In general, the observations are relative more peaked.

The percentiles were computed for the quartile (25th percentile), median or middle value

(50th percentile), and the 75th percentile. The 25th (50th,75th) percentile defines the

number of cases where 25time series can be found. The percentiles confirm that the

distributions in the coarser resolution are denser toward smaller values. In both wind

speed and wind power the difference to the observation increases from 0.014◦ linearly

to the 0.3◦ resolution. It is worth noting that the coarser resolutions have much less

values in the higher ranges of wind power and wind speed. This gives an indication that

the relatively good results in the error statistics are due to lower or smoother values in

general.
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Figure 3.10: Frequency distributions for Kilronan Wind Farm over a 3 months period

from January to March 2001. The plots on the left are wind power distributions and

the plots on the right are wind speed distributions

The distribution statistics showed that in wind power space the forecasts in the 0.014◦

resolution are significantly better than in the coarser resolution. In the wind speed

space, the 0.05◦ is equally good as the 0.014◦. This confirms the suggestion that 0.05◦

resolution is necessary under the simulated conditions, but that there is not enough

improvement by increasing the resolution to 0.014◦ to justify the higher computational

costs.

3.7.5 Interpretation of the results at a Reference Farm

The statistical tests did not show much improvement when modelling in high resolution

(see Table 3.3 and 3.4). At first glance this seems to be a rather surprising result. The

subjective analysis of the time series showed however that peaks of high wind speed,
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which are significant for power predictions, can only be captured with model resolutions

of 0.05◦ or higher.

Another reason for the relative poor error statistics is the fact that the model area for the

high resolution runs was significantly smaller than for the coarser resolution runs. This

is due to the high computational demand when modelling in this resolution. For the

forecasts this means that the high-resolution runs are slaves of their boundary values.

Large-scale effects are only introduced through the non-physical boundary relaxation,

which is applied in a very narrow zone. In this case it was applied to a frame surrounding

the model domain with a size of approximately 10 grid points.

Figure 3.11: Example of predicted wind speed and wind power at Julian Day 10 to 12

at Kilronan Wind Farm. The line with the stars indicate the observations, the dotted

line is at 0.014◦ (e014), the dashed line is also at 0.014◦ (n014), the solid line is at 0.05◦

(g050), the dashed line with crosses is at 0.15◦ (g150) and the dashed line with triangles

is also at 0.30◦ (se300).



Chapter 3 The Quality of Wind Power Predictions from a NWP model 69

Another consequence of modelling on a small model area is that the error that is intro-

duced from noise at the boundaries becomes larger, the closer the points of consideration

are to the boundaries. High resolution is also automatically subject to larger rms er-

rors and usually the worst when phase errors arise. In fact, it is most pronounced in

extreme events, especially when peak values of more than 15m/s are met. Even though

the peaks have the correct magnitude, a phase error creates large absolute errors when

the peak wind speed is delayed. In such cases large absolute errors are reported twice,

once when the peak event occurs and another time when it is already past. One example

of such double errors is the 11th January 2001 in Kilronan.
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Figure 3.12: Example of predicted wind speed at level 31 (shaded) and geopotential

heights (contours with 10m intervals) at Julian Day 11, 18UTC at Kilronan Wind Farm

in 0.3◦ (left upper plot), 0.15◦ (right upper plot), 0.05◦ (left lower plot) and 0.014◦ (right

lower plot).

Figure 3.12 shows the difference in the resolutions and also the problem that arises

from phase errors in the high resolution. Even though the high resolution seems to
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have disadvantages when phase errors arise, the surface representation in the model is

a very important parameter for the prediction at specific sites.

It was found that only with a resolution of 0.014◦ it was possible to capture peak

values greater than 15m/s with a high reliability at all wind farms. This can only

be seen by subjectively evaluating time series and horizontal plots. Figure 3.12 is the

corresponding horizontal plot to Figure 3.11 at Julian Day 11, 2001, where the problem

is pronounced. The plot shows 4 different resolutions (0.3◦,0.15◦,0.05◦,0.014◦) where the

wind speed is shaded and contour lines are the geopotential heights. When analysing

these plots, it seems that the statistics is rather misleading with regards to maximum

values. Maximum values of 20m/s are achieved by almost every model once in the

3 months period, which means that the parameter does not give an indication about

the capability of the model to simulate peak events. The variability in the various

resolutions also does not indicate that there are advantages of modelling in higher

resolutions. As mentioned above, subjective analysis of the data however revealed some

of the important effects of resolution. The 0.30◦ and 0.15◦ for example do not have the

same orography as the 0.5◦ and 0.014◦ resolution. The plot shows that the wind speed

at the coarse resolutions is mainly dependent on the large scale flow, because of the

smooth orography. In the higher resolution (0.014◦), it can be seen that the wind speed

follows the terrain features realistically.

The evaluation of the most suitable resolution is not a trivial task. This analysis

showed how difficult it is to evaluate whether the higher resolutions are more suitable

for predicting wind parameters accurately or not. When averaging over large areas, or

accumulating wind power over for example one day, the high resolution outliers might

be removed, but the coarse resolution might also be sufficient in such cases. To produce

the most reliable results, the phase error problem of punishing the high resolution model

twice for not having the peak when it occurs and having the peak when it is past has

to be attacked.
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3.7.6 Interpretation of the results at the Wind Farms

As mentioned in the previous section, the initial conditions can have a negative effect,

especially in the high resolution. The reason is that the analysis fields from the global

models are usually in rather coarse resolution (approx. 1.0◦) . All motion on a scale

below 30-60km is then solely generated by the model itself. The weather created by the

models is either stationary and locally forced or a function of the motion on a larger

scale. If there is no stationary weather with local forcing, the smallest scales represent

the statistical behaviour of the model and can differ from the actual local weather

condition. If this is the case, the forecasts might be improved by applying a time filter.

Such a filter could be useful in the high resolution to take away the shortest waves in

time or space and thereby force the model toward the large-scale development.

A detailed study of some selected cases demonstrated that stationary weather with

local forcing existed and that the models were able to simulate these scenarios. These

situations are however not dominating in areas with complex terrain such as in Ireland.

Because weather is mostly very changeable in such areas, stationary weather occurs

rather seldom. Applying a time filter on the high-resolution alone will most likely not

solve the problem. In contrary, it can also reduce the variability of the forecasts in

comparison to the observations, which could have negative effects on the wind to power

conversion.

3.8 Error sources in the forecasts

To find the real sources of the error for a given forecast is practically impossible. This is

because the model system is setup with approximations, which itself have the potential

of being sources of large errors.

It has been demonstrated that one of the most serious sources of error when modelling

with a NWP system are phase errors of fronts, which are only in theory separable from

other error sources. One way to separate them is to compare model winds with observed
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winds at wind parks. This comparison however must include local corrections, which

can not be done explicitly in the prediction systems of today. This source of errors has

been handled with statistics tools in the past.

Other errors are even more difficult to investigate, because their time dependency is

smoother and therefore they are less visible. More over, those errors are often a re-

sult of unrealistic approximations of the description of the physical processes or bad

representation of the orography that arise on a rather local scale and require special

monitoring to be identified or improved.

The following section will provide a summary of the error sources in the NWP models

that have been identified in the Irish Study.

The Error Sources at a Glance

A detailed discussion and illustration of the error sources in the prediction of wind speed,

direction and wind power that were identified in the Irish Study follows hereafter. For

this purpose a number of time series were selected from the 5 wind farms. A table with

information about the measurement of the observational data is given in Appendix C.

Figure 3.13, Figure 3.14, Figure 3.15, Figure 3.16, Figure 3.17, Figure 3.18 are used

as typical examples of error sources in NWP models for wind energy purposes. The

observations and forecasts in these selected cases have been verified against analysed

fields to ensure that no misinterpretations are made because of erroneous observation

or forecasts. If observations or forecasts had errors they are mentioned explicitly.

It was also not intended to analyse in detail the reason for the failure of the model from

a meteorological point of view in these specific cases, but to use examples to illustrate

the principles behind the failures. A summary of the findings is provided at the end of

the section.

Figure 3.13 shows an example of a peak event that is highly underestimated in power

space, even though the wind speeds seem to be predicted relatively well. The peak

production of the wind farm is at 5000kW. The wind starts to rise at midday of day
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30. In that period all forecasts are in the same range and the maximum error seems

to be around 1m/s. However, in power space the observations show already at that

point in time higher values than the forecasts. The 0.05◦ model run (g050) follows

closest in power space, even though it is overestimating the wind speed in the range

20-23h on day 30. At midnight there seems to be an observation error, because the

observations continue to rise after about one hour. The forecasts of wind speed still

follow the observations after midnight, whereas the difference in power space grows up

to 2000kW. This is almost half of the wind farms installed capacity.

Figure 3.13: Example of predicted wind speed and wind power at Julian Day 30-32 at

BessyBell Wind Farm. The line with the stars indicate the observations, the dotted

line is at 0.014◦ (e014), the dashed line is also at 0.014◦ (n014), the solid line is at 0.05◦

(g050), the dashed line with crosses is at 0.15◦ (g150) and the dashed line with triangles

is also at 0.30◦ (se300).

This behaviour indicates that the conversion from wind speed to wind power is not

working very well. The simplified model used in this study included power curves from

the manufacturer, and suggests that a more sophisticated power curve parameterisation
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is required.

The following day (Julian Day 31) shows a typical phase error of around five to six hours,

where all forecasts are subject to the error. The errors account for up to two third of

installed capacity. These kind of phase errors usually arise when the position of a low

is predicted incorrect. The source of the error can also be in the boundary generating

model or the analysis. In a real-time environment where forecasts are available every

6h, these events have a predictability of usually approximately 12h. They are dependent

on the analysis fields and how fast the model system achieves a state of balance.

Figure 3.14: Example of predicted wind speed and wind power at Julian Day 29-34 at

Beennageha Wind Farm. The line with the stars indicate the observations, the dotted

line is at 0.014◦ (e014), the dashed line is also at 0.014◦ (n014), the solid line is at 0.05◦

(g050), the dashed line with crosses is at 0.15◦ (g150) and the dashed line with triangles

is also at 0.30◦ (se300).

Figure 3.14 also shows an event, where none of the model configurations predicted

the wind speed peak. In contrary, the forecasts even decreased to the threshold value

(5m/s) for zero power production.
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The observations in this case show an example of local extreme wind gusts that cause

some of the turbines to switch off. This seems to be a very local effect, because the

large scale analysis did not indicate strong winds at this day. There was however a

change in wind direction within 6 hours from southerly to westerly winds.

Between Julian Day 32 midday and 33 another example of insufficient accuracy in the

conversion of wind to power was observed. In other words, the power parameterisation

or power curve is not site-specific enough.

Figure 3.15: Example of predicted wind speed and wind power at Julian Day 36/37 at

Kilronan Wind Farm. The line with the stars indicate the observations, the dotted line

is at 0.014◦ (e014), the dashed line is also at 0.014◦ (n014), the solid line is at 0.05◦

(g050), the dashed line with crosses is at 0.15◦ (g150) and the dashed line with triangles

is also at 0.30◦ (se300).

Figure 3.15 shows a typical example of a phase error and a local effect that could not

be captured with any model resolution. It starts with a phase error at the end of day 35

of approximately 3h, which corresponds to around 2-3m/s. In power space this results

in errors of up to 30% (1.5MW of 5MW installed capacity). The problem arises in the
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morning of day 36, when both of the 0.014◦ runs (e014, n014) and the 0.05◦ (g050)

gradually increase and reach a peak of approximately 15m/s. This corresponds to full

production (5.0MW) in power space. In the same time frame the observations drop to

7m/s and 1.0MW. It is interesting to observe that the coarser resolution runs have an

even stronger phase error. They peak 5h later, but with less intensity. The errors in

such a case are large and can cause severe grid insecurity or economic loss.

Figure 3.16: Example of predicted wind speed and wind power at Julian Day 41-43 at

Milane Hill Wind Farm. The line with the stars indicate the observations, the dotted

line is at 0.014◦ (e014), the dashed line is also at 0.014◦ (n014), the solid line is at 0.05◦

(g050), the dashed line with crosses is at 0.15◦ (g150) and the dashed line with triangles

is also at 0.30◦ (se300).

The phase error example is followed by a typical case of non-predictability. The obser-

vations gradually increase up to 25m/s over a period of 5h. The peak lasts for about

2h, where the turbines switch off. This case was not predicted by any of the forecasts.

An explanation is difficult, because there are many reasons why models fail. Local

effects might be responsible for the errors or another reason could be unstable weather
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conditions. In this case for example, the weather maps indicated that a trough went

directly through the area where Kilronan wind farm is located. The wind fields became

cyclonic and the atmosphere extremely unstable.

Figure 3.17 is an example of a direction dependent site that has a high variability in

both wind speed and power for northerly wind directions. Changes in wind power of

up to 50% of installed capacity within one hour have been observed for winds from

northerly directions at that site. In the example (Julian Day 12 to 15) none of the

runs, can capture the peaks measured at the site. Even though all forecasts follow the

same ”weather”, the observations have a higher variability and thus higher peaks. The

wind direction is from north-east or north-west in all cases. If the wind direction is

southerly, the observations usually lie withing the spread of the forecasts.

Thus, it seems that the wind farm has a direction dependency for northerly wind

directions. This phenomena is quite common for the prevailing wind direction at wind

farms. Wind farm planners are in fact looking for sites, where wind speeds higher than

the area average are observed. These are for example at mountain tops or valleys where

lee effects enhance the average wind speed etc.

Figure 3.16 is another example of a phase error of 1-2 hours. In both cases (Julian Day

40 and 42) the higher resolutions capture the peak in wind speed and wind power, but

too late. The coarser resolution runs (e300 and se300) are far below the observations.

This is an examples where the subjective analysis indicates that the high resolution is

of advantage in extreme events.

In all cases shown so far, the subjective analysis would give a different result than the

error statistics, because the coarser resolutions are much smoother and therefore have

less errors. Figure 3.18 shows an example of wind power drops from turbines. This is

very pronounced at Julian Day 36. In this case there is a sudden drop in wind speed

and power production followed by a gradual increase of both wind speed and power to

a second peak. that experience cut-off wind speeds of more than 23m/s.
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Figure 3.17: Example of predicted wind speed and wind power at Julian Day 10 to 15

at Lendrum’s Bridge Wind Farm. The line with the stars indicate the observations, the

dotted line is at 0.014◦ (e014), the dashed line is also at 0.014◦ (n014), the solid line is

at 0.05◦ (g050), the dashed line with crosses is at 0.15◦ (g150) and the dashed line with

triangles is also at 0.30◦ (se300).

The power production drops suddenly to only 10% of installed capacity. When analysing

the data it was found that the wind speed was measured at 10m above ground.

A second wind anemometer at 45m height above ground recorded higher wind speeds

of over 22m in these 5 hours, which is consistent with the power drop from turbines

shutting down at cut-off wind speed and the hub height of the turbine. The comparison

of the two recording anemometer demonstrated the increase of wind speed with height.

This figure also explains why the high resolution models are not better in average than

the coarser models. The 0.014◦ model predicted the event of the 35th to the 37th and

also Julian Day 39 to 40 very well. At Julian Day 38 it over-predicts the wind speed

strongly. This results in an over-prediction of one third of installed capacity. The

coarser resolutions are much smoother and therefore have less errors.



Chapter 3 The Quality of Wind Power Predictions from a NWP model 79

Figure 3.18: Example of predicted wind speed and wind power at Julian Day 35-40 at

Tursillagh Wind Farm. The line with the stars indicate the observations, the dotted

line is at 0.014◦ (e014), the dashed line is also at 0.014◦ (n014), the solid line is at 0.05◦

(g050), the dashed line with crosses is at 0.15◦ (g150) and the dashed line with triangles

is also at 0.30◦ (se300).
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Summary of the Error Sources at a Glance

• Truncation errors are significant if the model area is too small. If this is the case

the gain of high resolution is lost.

• In many cases a more sophisticated power parameterisation is required, especially

if extreme events should become more predicable.

• Phase errors of 5-6 hours usually arise when the position of a low is predicted

incorrect with a few hundreds of kilometres. In this case non of the forecasts

matched the observations

• Local extreme wind gusts are responsible for turbines to switch off instantaneous,

which results in huge errors in the predictions and can cause severe problems in

grid security

• Non-predicable extreme events are often either very local effects or non-trusted

observations in the analysis that cause an underdevelopment in the forecast. It

is a well-known phenomena in real-time environments and has been shown that

such phenomena are mostly predictable from 12h-6h before occurrence, when new

analysis fields are fed into the model.

• Phase errors of 1-2 hours are difficult to interpret. A high resolution model setup

shows mostly smaller phase errors than a coarser resolution model setup. This is

due to local effects and better representation of the orography.

• High variability in both wind speed and power at a site makes the prediction even

with a NWP model very difficult and in some cases impossible.

• Drops in wind power can be sudden and significant and do not always correspond

to the measured wind speed.

• ”uncertain weather” can last for several hours. It is believed that the forecasts of

such weather phenomena can only be improved by implementing such cases into

a statistical correction tool.

• Direction changes within a short time can create significant discrepancy between

the NWP model and the atmosphere and thus incorrect predictions
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3.9 The Deficiencies and Constraints in accurately

predicting Wind Power

This study revealed some of today’s main deficiencies and constraints in accurately

predicting wind power. In the following, the three main error sources are summarised

and possible solutions are discussed to attack these errors and to improve the forecasts.

Discrepancy between the NWP model and the Atmosphere

If there is a significant discrepancy between a NWP model and the atmosphere in an

ultra short range forecast or an analysis, there is usually a poorly developed low in an

unstable airmass with a significant amount of humidity close to the target area. The

atmospheric forcing in such a case comes from the low’s cyclonic motion and latent heat

release generated by the rising motion. It would require vertical soundings in a dense

observational network to get hold of the flow structure in such cases. The flow structure

is too complicated for the NWP model system (including the analysis) to resemble the

atmosphere. The problem is that the observational network is not dense enough and

observations are often randomly rejected or accepted, such that these observations

cannot create enough structure in the model.

The requirement to predict such developments would include an upgrade of the ob-

servational network especially for such events and therefore seems to be unrealistic.

However, it might be realistic to simulate this kind of weather in the future with a

nested high resolution model system, which uses wind power observations in high time

resolution to force the model. It follows the idea that, if a certain development is started

in the model, it is likely that the model will keep the correct structure for a certain

time. In such a case, the model system should be started in the past with wind power

observations and integrate forward to create a prediction.
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Lack of Accuracy of Boundary Layer Winds:

The standard deviation of the high-resolution model data was found to be closely related

to the observations, while the low-resolution model data showed too little variability.

However, the standard deviation of the difference between model and observations does

hardly improve in the high-resolution runs compared to the low-resolution runs. This

suggests to either apply a filter to smooth the high-resolution data and thereby loose

variability or to introduce an ensemble of forecasts in lower resolution. In that case the

introduction of direction and wind speed dependent roughness parameterisation into

the model should be done to account for the lack of accuracy in the lower resolution.

Systematic Model Errors:

Systematic model errors appear in all model resolutions and have to be taken into

account by local statistical corrections. It is not realistic to run a NWP model in a

resolution where these errors disappear. But, the higher the resolution, the smaller the

statistical corrections that need to be applied. High resolution long term statistics could

therefore be used to compute statistical weight coefficients to account for systematic

errors in the wind speed prediction.

Systematic Errors in the Conversion of Wind to Power

Local extreme wind gusts are often responsible for turbines to switch off instantaneous,

which can result in large errors in the predictions. These can also cause instabilities

in the electrical grid, if the wind farms are large. The best way of dealing with these

errors is in form of efficiency based power curves. It means that an efficiency factor is

computed that corrects the conversion from wind to power when the circumstances are

not optimal for the turbines. This can be done with historic datasets. Such a correction

is most important if the wind speed predictions are of high quality.
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Phase Errors of Fronts:

Changes in wind speed on a frequency of a few hours are dependent on the area. In

Ireland these are typically generated from warm fronts and cold fronts, which appear

very frequent. Forecasting of those phenomena requires that the model domain covers

most of the Northern Atlantic. However, the model state is not very accurate over the

ocean, and therefore results in high prediction errors. The most obvious solution to

solve this problem is to use an ensemble forecasting system that is capable of handling

this uncertainty. This technique is already in operation in the medium time range (3-

10 days) by for example the European Centre for Medium Range Weather Forecasting

(ECMWF) or the National Center of Environmental Protection (NCEP). For wind

energy purposes a short range ensemble system (0-48h) in higher resolution would

however be required. The phase errors of small scale (1-2 hours) can only be dealt

with local statistics. A way of dealing with these is by using for example a statistical

tool that produces an ensemble of forecasts at extreme events for a wider area. Such a

poormans ensemble would give the possibility of defining uncertainties in the position

of the extremes. It would be a function of the probability density (pdf), the mean and

standard deviation (stdev).

U = fP ower(pdf, mean, stdev) (3.2)

Impact of the Results for the Prediction of Wind Power

The observational verification of five wind farms in Ireland suggested that resolution

does not increase the accuracy of the forecasts over longer periods. Subjective evaluation

on the other hand has identified, that high resolution is required to be able to capture

all weather phenomena and especially extreme events. It has also been identified that

high resolution is only beneficial over a relatively large model domain or if the model is

fully nested. This is because of noise from the boundaries and imbalances that create

model truncation errors.

One of the main arguments for modelling in high resolution is the bad representation
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of the orography in the coarse model grids. It has been shown that the lack of small

scale features can introduce errors in the forecasts, especially in coarse resolution and

in complex terrain. The reason is that the NWP model uses an average orography for

the grid box, which often differs from the real orography (see Figure 3.12).

This difference of the model’s orography to reality is a function of resolution and implies

for wind power predictions that a virtual turbine height should always to be computed

at the sites of interest. Such virtual turbine heights can be identified by studying the

weather pattern and orographic effects on the wind speed and direction at the area of

interest.

These requirements to adjust the model’s orography to reality are specific for complex

terrain. In homogeneous terrain this is normally not a problem. An example for

homogeneous terrain is Denmark or the northern part of Germany. These are practically

flat with very few smoothly shaped hills. Thus, orographic effects play a minor role. In

complex terrain (e.g. at Ireland’s west coast, Spain, Italy) a flow direction dependent

parameterisation might be a requirement for the computation of the virtual turbine

height due to the direction dependent slope of the ground.

In general, the orographic accuracy in the model system can have effect on the accuracy

of the forecasts for certain configurations of a model. This is due the parameterisation

of the physical processes in a NWP model that are not equally suitable for all terrain

types. The same can be applied for the requirements of resolution. In homogeneous

terrain the requirements of resolution are not the same as in complex terrain. These

considerations can become even more complex, if the area of interest is at a different

place with totally different weather forcing such as the USA, Africa or China.

If the goal is to reduce economic risks and make wind power economically competitive

within liberalised markets, the results of the Irish Study suggest that phase errors of

frontal systems and the lack of accuracy of boundary layer winds have to be improved.

Both error sources have a high degree of uncertainty from the model system itself

and the initial conditions. This points towards using an ensemble of forecasts, which

provides different forecasts, if the weather development is uncertain.



Chapter 4

The Benefits of an Ensemble of

Predictions to forecast Wind Power

In the European Commission’s Green Paper for Energy and the Environment it is

envisaged that the renewable energy demand should account for 12% of the energy

production in all European countries by 2010 (Commission of the European Countries,

2000). The highest potential to fulfil these requirements lies thereby within the wind

energy sector, especially in large offshore wind parks. As previously discussed, it is

imperative to enhance the prediction quality of especially wind velocity to assist in the

realisation of these targets.

The previous two chapters described a set of experiments, which were used to identify

the error sources and to develop new strategies for increasing the accuracy of today’s

NWP models. These experiments were necessary to find solutions that assist in under-

standing the uncertainty of the forecasts. The use of an ensemble of weather forecasts

was found to be most suitable when dealing with the problem of forecast uncertainty.

The results of the experiments indicated the need to average the high-resolution fore-

casts in space and time. This however leads to the loss of variability of the wind velocity,

and hence the loss of accuracy of local forecasts from the higher resolution predictions.

An alternative to this strategy is to introduce an ensemble of forecasts in lower reso-

lution. Traditional approaches in meteorology average ensembles of forecasts that are

initiated from different initial conditions. In this way a deterministic model setup can

85
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be perturbed for the purpose of reducing random errors (noise) in model predictions.

The European Center of Medium Range Forecasting (ECMWF) argues that one of the

requirements to be met by an ensemble forecasting system (EPS) is that the spread of

the ensemble should be sufficient to cover the uncertainties in the forecast, which are due

to inaccuracies in the initial conditions and also due to model imprecision (Strauss et al.,

1996). Although, the strategy of ECMWF’s Ensemble Prediction System (EPS) cannot

be transformed directly to the short-range, the principles of the ensemble prediction

hold nevertheless. The previous experiments have been examined again with this in

mind and it is expected that using an ensemble of forecasts will most likely be necessary

to solve the problems associated with the variability and uncertainty of forecasts for

the wind energy industry.

4.1 Criteria for using an ensemble of forecasts

A set of criteria has been identified, which focus on the benefits of an ensemble of

forecasts. These are weather related conditions that are mostly too difficult for deter-

ministic models to produce reliable and correct forecasts. It is under these conditions,

that the uncertainty of the forecasts is expected to be highest. The criteria are:

* Strong curvature of the isobars

* Small areas with wind extremes

* A low pressure system passing close to the target area

* Flow along target area boundaries

* Rapid changes of wind velocities in time

These criteria are thumb rules that can be used to identify subjectively when there is

high uncertainty in the forecasts.

From a modelling point of view the uncertainties of the forecasts are very much related

to the initial conditions (Buizza et al. 2001). In the description of the new 80km High

Resolution ECMWF EPS, Buizza (2001) states, that ensemble prediction based on

an appropriate probability density function (PDF) by a finite number of deterministic
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integrations designed to represent both initial and model uncertainties appears to be

the only feasible method to predict the PDF beyond the range of linear model error

growth. In this respect ECMWF has implemented in their Strategic Plan for 1999-2008

(adopted by the Council of ECMWF in June 1999) the target to achieve a gain of one

day at D+6 (forecast 6 days ahead) in the Brier-Skill-Score (Brier, 1950) of moderate

850hPa temperature anomalies (4K or larger) in Europe. In other words, ECMWF aims

for a relative improvement in predictability of approximately 16.67% by 2008. Using

850hPa temperature is a useful measure in order to get an unbiased idea of the error

source. This is because there are no local effects that can diffuse the error source in the

free atmosphere and above the boundary layer. Mean-sea-level pressure is also often

used for verification of the forecast quality my meteorologists for the same reasons (e.g.

Buizza et al. 2001).

To summarise, one of the key questions is whether the ensemble technique can reduce

the forecasting error growth beyond the linear error growth as descried in Chapter 2

(Figure 3.1).

4.2 State-of-the-Art in Short-Range Ensemble Pre-

diction

Currently, there are mostly medium-range ensemble systems in operational use at the

European Center for Medium Range Weather Forecasting (ECMWF), at the National

Center for Environmental Prediction (NCEP), Canadian Meteorological Center (CMC).

Short-range ensemble systems are only under discussion and testing in various centres

such as NCEP, Meteo France, UK MetOffice, Deutscher Wetter Dienst (DWD), Nor-

wegian Met Centre, Spanish Met Center (INM). This is because the perturbations in

the initial conditions, as done for example by ECMWF with singular vectors or NCEP

with breeding, are regarded as unsuitable in the short-range forecasting (Palmer, 2002).

Palmer showed in his presentation time series plots of an ensemble spread and control
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forecast error for a 3 month period (Jan - March 2002). These plots show the correla-

tion between ensemble spread and control forecast error. A correlation is only visible

after day 4 of the forecast, which proves that perturbations of the initial conditions

with singular vectors are only feasible for the medium range. In a recent workshop on

Short-Range Ensemble Prediction Systems (Quiby, 2002) these differences and possible

perturbations for the short-range were discussed and it was concluded that uncertainties

in the daily forecasts are the result of errors in:

1. Initial conditions

2. Model physics parameterisations

3. Lateral boundary conditions

4. Surface parameters

To tackle the uncertainties in the initial conditions so far, perturbations are done in

the medium range by using the singular vector approach at ECMWF (Buizza, 1999)

or error breeding in NCEP (Toth and Kalnay, 1993). In the short-range, so-called

ensemble data assimilation is considered for example by Houtekamer et al. (1996) and

Bishop et al, (2001), who are using a filter technique referred to as Ensemble Transform

Kalman Filter. Mylne is using a multi-model multi-analysis technique (Mylne et al.,

2000). Further plans for perturbation strategies in the short-range by Met Centres in

Europe to address the uncertainties of the model physics are described in the workshop

on short range ensemble prediction using limited-area models (Quiby, 2002). These are:

- using different model systems (Multi-model approach)

- Perturbing tendencies in the physics (Stochastic physics)

- using different physics schemes (Multi-Scheme approach)

- Perturbing Surface Parameters (mainly roughness)

In the Multi-scheme approach perturbations can be added effectively in the convec-

tion, cloud and micro physics, horizontal and vertical diffusion, radiation and surface

roughness.
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4.3 Design of an Ensemble Prediction System

It has been shown in the previous chapters that the largest errors come from phase

errors in the prediction. As discussed above, there are various possibilities to deal

with these errors. One possibility is to use a multi-scheme ensemble approach and

perturb the NWP model in the fast physical and dynamical processes. For this rea-

son a Multi-Scheme Ensemble System was designed to apply perturbations in the fast

physical processes. The processes that are most relevant for phase errors in a NWP

model are the vertical diffusion and convection (Haltinger, 1979). An ensemble system

comprising 25 members was created with this strategy. In order to reflect the uncer-

tainties in the dynamic tendencies and also tackle phase errors in the predictions, two

different dynamical schemes have been applied. With this method the ensemble size

was increased from 25 to 50 members.

In order to have full consistency in the model system, an individual first guess for

each ensemble member was introduced. This can be classified as perturbations of the

initial conditions. In contrast to the physical and dynamical perturbations, the first

guess perturbations determine the smaller scales in the models initial state and are only

applied in the beginning of the forecast.

The development and testing of the Multi-Scheme ensemble system for a 3-month period

in the beginning of 2001 (January to March) involved three major modelling tasks and

one verification task that included the development of an uncertainty estimate.

The modelling included 2 forecast series for all 50 ensemble members in coarse resolution

(0.45◦) and one high resolution deterministic forecast series (0.05◦). Note, that the

relevant starting time was 06UTC and 00UTC, and the forecast length was 42h and

48h, respectively.

This was chosen because the project was funded and designed for the Danish Trans-

mission System Operator Eltra. In the Danish electricity market every player dealing

with Renewables has to give a bid of their power production from wind by 11 GMT for

the following day. For the forecasting system this means that forecasts starting from
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06UTC need to be 42h and those forecasts from 00UTC need to be 48h. The study was

split into 5 parts:

1. Development of the 50 member ensemble system

2. 42-hour forecasts for all 50 members starting at 06UTC

3. 48-hour forecasts for all 50 members starting at 00UTC

4. Deterministic forecast with boundary files from one selected EPS-member

5. Development of EPS verification including uncertainty estimate

The forecast spread of the EPS will grow with time. Thus, the two-day forecast based

on the mean of the EPS members is often a rather conservative guess and also not nec-

essarily the solution with the highest probability. A more advanced analysis technique

is therefore applied to the ensemble to produce an estimate of forecasting uncertainty

for certain variables according to their probability distribution. This includes the pre-

diction of parameters with the highest probability. The modelling has been conducted

on a LINUX-PC Cluster.

4.3.1 Model Area

The selected area for the project is shown in Figure 4.1. The area is formulated in

rotated latitude/longitude coordinates.The geographical south pole is located near India

at coordinate (80,0) (see also 2.7). The model grid consist of 92 longitudinal and 178

latitudinal grid points with a grid spacing of 0.45◦. The model resolution is therefore

under 50 km.

The area covers Europe and the Atlantic and was chosen to ensure that all large-scale

phenomena arising from the North Atlantic are covered in the model grid. In other

words, it is crucial that the area is large enough so that the ensemble members are not

slaves of the input at the boundaries. This is especially important for the development

of low pressure systems and frontal systems coming towards Europe from the Atlantic.

Furthermore, the grid was tailored for Denmark and Ireland, such that only very few

weather situations, that have an impact on wind energy, can reach Denmark or Ireland
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Figure 4.1: Model area for the 50-member EPS

from the boundary of this model domain in a two day period. An example would be

a polar low coming from the area around Svalbart that moves southward and stays

westward of Norway. This is a rare phenomena and normally only takes place when the

jet stream is relatively weak at the end of March or the beginning of October.

A blocking high pressure system over the Atlantic can also cause the flow to come from

that region toward Denmark. The phase speed of such a disturbance is lower than

average and therefore not critical for a 48h forecast.

4.3.2 The Ensemble Prediction System

The ensemble prediction system was specifically designed to tackle the problems asso-

ciated with wind energy forecasts. Problems such as very low accuracy in the lower

boundary wind forecasts, phase errors of low pressure systems and frontal systems and

the uncertainty of the forecast quality.

As described above an ensemble of 50 ensemble members was created for this purpose

and was build by applying perturbations to:
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- the initial conditions (1)

- the advection process (2)

- the fast physics processes (25)

The perturbations in the initial conditions are designed for the short-range ensemble

forecasting, because the perturbations are done by preserving the smaller scales in the

first guess for every ensemble member. Thus, only the large scale analysis increment

is added to the basic prognostic model variables. This strategy ensures balance in the

model system. It is a technique, which has only now become practical for ensemble

forecasting, because of the reduced cost of storing data.

The use of the multi-scheme approach in the advection process was introduced due to

the fact that phase errors are a very critical parameter for the requirements in wind

energy. The finite differencing techniques referred to as first-order-upstream differencing

and the Semi-Lagrangian technique have been used. It seems that the advection process

is more accurately computed in the Semi Lagrangian scheme. On the other hand, the

cyclogenisis process, that is the vorticity tendency following the motion, seems to be

solved more accurately in the upstream-Eulerian scheme, presumably because of the

shorter time-step.

The perturbations in the fast physical processes follow the general ideas of the multi-

scheme approach (Mylne et al, 2002). The perturbed processes are the convection and

vertical diffusion. The vertical diffusion simulates the mixing effects of the departure

of the mean wind in space and time, which is the turbulence and boundary layer eddies

in the atmosphere. These do not exist in the model and therefore have to be param-

eterised. If a process is not simulated by the prognostic equations in the model grid,

the effects are described with a set of equations using the grid point averaged model

variables. The process is then said to be parameterised. The vertical diffusion controls

also the mixing length of the middle and upper atmosphere, which to a large extent

determines the phase speed and amplification of atmospheric fronts. Furthermore, the

interaction between the vertical diffusion and condensation scheme in a NWP model
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is strongest near frontal systems, because these are associated with precipitation and

significant amounts of vertical sub grid motion due to the condensation processes. Two

forecasts with different vertical diffusion/condensation interactions typically develop

slightly different with respect to frontal systems. This applies in particular when the

weather pattern is not yet well developed and structured. There are parts of the con-

densation processes that are very uncertain because of their complexity. Both, vertical

diffusion and condensation have a major impact on the development of frontal systems

in the model system. There is little difference in average weather conditions, but there

are significant differences between different scheme combinations at particular areas in

space and time. Once there is difference in the model space, a process can grow or

dampen out depending on the stability of the atmosphere. Hence, the multi-scheme

EPS provides different solutions where the development is uncertain.

4.4 A new Ensemble Classification Method

The classification of the ensemble members into groups of probable outcomes of the

meteorological future is not trivial. The detail of interpretation of derived probabilities

from ensemble predictions depends a lot on the end users requirements. As an example,

a cluster consisting of 50 PC’s running the EPS system will produce 29GB data in less

than 25 minutes. Only a fraction of this output is however relevant for the end-user. The

analysis and presentation of the data is therefore equally important as the generation

of the ensemble itself. An efficient way to reduce the information is to use the ensemble

mean. However, this is also only relevant, if all ensemble members are equally good.

There are two advanced methods which can be used for such a preselecting procedure.

These are

1. Clustering

2. Tubing
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In the Clustering procedure the selection is unbiased and groups ensemble members

around hypothetical centroids. It is a basic selection procedure toward similarities in

the data. Tubing on the other hand groups ensemble members if they differ similarly

from the mean of the ensemble. It groups members along axes coming from the ensemble

mean and reaching the extremes of the distribution. These axes represent the variation

of the ensemble members deviating from the mean (Atger, 1998).

As an alternative to these classification methods a new method is proposed: probabilistic

multi-trend filter (pmt-filter). The pmt-filter is based on the classical clustering method,

but selects groups of ensemble members taking the past and future into account. In

other words, it is a forward-backward clustering method that strips off those members

that do not follow a group or are only temporary the most probable outcome. This

algorithm is mainly designed for an operator/forecaster in an utility as a method to

find a conservative guess of the most probable outcome of a certain weather situation.

It should help to build up confidence for interpreting the probability distribution and

estimate the risks for certain actions.

Technically, it was found that the classical clustering method produced unacceptably

abrupt changes in the computations of the most likely meteorological future. In fact,

it was observed that when computing the most likely outcome, computed as the group

with the highest probability, the classical clustering algorithm ”hopped” from one pos-

sible future to the next within one time-step. This caused the algorithm to became very

unstable whenever there were two or more larger groups of members that had similar

probabilities.

Therefore, a method was developed that took the past and future distribution into

account as a weighting function. In the future computation those that had highest

probability in the last time step start with a higher weight than the others. In that

way, developing paths are followed once the selection has passed the forking point

(junction).

This method will be referred to as forward-backward stepping in the following discus-

sion. The algorithm is fed with long term statistics in the initial guess, but as the
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iterations progress the selection becomes gradually more dynamic. The process can

also be applied in the two dimensional space (fields).

A future version might include two horizontal dimensions and the time dimension con-

currently. The potential of this method is that it allows for forecasts that are started

earlier to be taken into consideration in the ensemble evaluation. However, members

from such ”older” forecasts can not take over unless they agree with the ”newer” fore-

casts. The ”older” forecasts will also only be accepted as likely, if they follow a group

of fresher forecasts.

The strength of this approach is that it automatically filters out the poor forecasts and

thereby provides more accurate probabilities. It is an efficient way to reduce the data.

When compared to a set of static weight coefficients, it is believed that the potential

improvement of the pmt-filter is higher by taking all 50 members into account with at

least 1% weight.

4.4.1 The Concept of the Probabilistic Multi-Trend Filter

The mathematical formulation of the proposed pmt-filter to compute probabilities for

the ensemble members can be found in Appendix~\ref{}. Note, that the probabilities

are entirely computed from the density of the ensemble, while one parameter, the best

guess is computed implicitly. This best guess forecast should reflect the most likely

outcome of the ”weather” in contrast to the ensemble mean.

In fact, the best guess forcast reflects the concept of the pmt-filter, namely, that it is

better to rather believe in a smaller group of forecasts over longer time windows than

in the mean of the entire group. The assumption follows the idea that in extreme

situations the mean is biased by outliers, whereas this is not the case for the best guess.

In longterm statistics and when considering parameter fields, the mean scores better

than the best guess. However, in extreme events it was observed that the best guess has

a clear advantage over the mean, because it does not take outliers into account. That

means, the higher the spread and the higher the uncertainty of the forecast, the more
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likely will the best forecast deviate from the mean and the better it scores relative to

the mean.

Figure 4.2: Qualitative demonstration of the pmt-filter algorithm

It has been found that the correlation between the prediction quality over a few hours is

fairly high. This knowledge is used to find patterns where groups of members perform

well over a certain time interval. These pattern are transformed into weights and

thereby taken into account in the selection procedure of the best guess. In practise this

means that the best guess is not necessarily the forecast with the highest probability,

but rather the most ”reasonable of the better forecast”.

Figure 4.2 is a graphical demonstration of the pmt-filter. In this example, the focus

shall be on six ensemble members (A through F). The ensemble members could also be

groups of ensemble members. These members are analysed using clustering techniques.

The difference between the pmt-filter Algorithm and traditional cluster analysis is that

the pmt-filter groups that persist over time. In this graphical example replicates B,C,D

and F are grouped closely during the last 3 time steps (n-3 to n). In the next time
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step replicate F leaves the group and forms a new group with replicate E. Over the

three time windows backward (n-1..n-3), the present state n and forward (n+1..n+3)

replicates B,C and D represent a clustered group and therefore they may be considered

a robust and consistent forecast.

4.5 Graphical Representation of the Uncertainty

A convenient way to display the uncertainty estimate of the ensemble system at specific

sites as well as averages over areas is to use contour plots or boxplots. The advantage

of the contour plots to represent the probability distributions of a certain parameter is

the ease of interpretation. If the forecast is rather certain, i.e. most ensemble members

give a similar result, then the band width of the probability plots is also rather thin.

In the case of a period of high uncertainty, the band width of the probabilities becomes

large. Therefore, it is easy to gain an overview of the period of interest, e.g. low or high

uncertainty. The inclusion of lines of the best guess, the EPS mean and the analysis

complements the plot to a workable graphical interpretation tool.

Figure 4.3 shows an example of a conture probability plot. The upper and lower solid

lines represent the maximum and minimum wind speeds in the ensemble. The colours

of the areas are determined by the probabilities derived from the ensemble. The most

likely value, the best guess forecast, according to the pmt-filter, is shown as the white

dashed line. The thin black dashed line is the EPS mean, the white solid line the

analysis.

In the first 24h the uncertainty of the forecast is rather small. After that, the uncertainty

triples from around 2-3 m/s to over 6 m/s. At forecast hour 35 it is worth noting that the

best guess starts following a new group, whereas the mean does not seem to be affected.

The same happens in the next hours (36h-42h), when the wind speed increases again.

On the development of the analysis, it can be seen that the change from one group of

ensemble members to another is not due unstabilities in the algorithm. On the contrary,

it confirms the theory that the best guess forecast is a good estimate of the uncertainty,
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as it follows the ensemble spread more thoroughly than the mean and thereby gives

at least an indication of the extreme changes that might occur. The mean is a more

conservative estimate and probably too smooth in extreme events.
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Figure 4.3: Example of a 48H forecast displayed as conture probability plot of wind

speed at Ryaa (DK) with the best guess (dashed white line), the EPS mean (dashed

blck line), Analysis (solid white line), EPS min and EPS max (solid outer lines). In

the first 24 hours, where the uncertainty is low, the best guess is very close to the EPS

mean. After 36 hours the best guess starts following another group of ensembles and

leaves the EPS mean following closer the analysis. Approx. 6 hours later it leaves it’s

group again. The analysis follows and confirms that this is not a algorithm problem.

Figure 4.4 displays a box plot of the same forecast as in Figure 4.3. The boxplots are

an abbreviated way to describe the statistics of a sample of data in a graphical way.

These plots are a summary of the following statistical numbers:

1. Minimum

2. First (Lower) Quartile (25th percentile)
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3. Median

4. Best guess forecast

5. Third (Upper) Quartile (75th percentile)

6. Maximum

The boxplots are a useful statistical measure of the overall uncertainty of the forecast

over the forecast time. The disadvantage of the boxplots is that it is only possible to

identify the defined parameters and not other ”groups” of possible outcome. Neverthe-

less, it can be seen that the best guess from the pmt-filter is fairly close to the median

of the EPS in times of little uncertainty (1h - 24h). When the uncertainty increases in

the forecast, the best guess leaves the median. This can be seen most pronounced at

forecast length 41h until 48h, where the best guess is closest to the lower quartile.
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Figure 4.4: Example of a box plot of a 48H forecast at the wind farm Ryaa on the

2001/02/09 06H. The cross denote the maximum, the circle denotes the first (upper)

quartile, the triangle denotes the median, the star denotes the lower quartile, the square

denotes the minimum of the ensemble and the solid line denotes the best guess.
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4.6 Verification Methods

The purpose of this study is to introduce a multi-scheme approach for predicting wind

speed and wind power and verify it against the current state of the art. The approach is

unique in that short-range forecasts are created with an ensemble of 50 members using

an multi-scheme approach to perturb the forecast model. The 50 ensemble members

are approximately of the same forecast quality. Verification of such a system is not a

simple task, because of the vast output created by an ensemble of this size. However,

the verification of the ensemble’s forecasts can be done with observation verification

and field verification.

The advantage of field verification versus observation verification has already been dis-

cussed in chapter 2 and will therefore not be discussed here. The verification of this

part also focuses on observation verification. Even though field verification is necessary

to estimate the full potential of the approach and to cover all error sources, it goes

beyond the scope of this work. Nevertheless, it is clear that in any further analysis of

the results at a later stage the field verification has to be taken into account.

It should be noted however that the observation verification results are usually a more

conservative estimate of the performance than the field verification. Especially in coarse

resolution, the latter gives more robust results, because it is area integrated in the

model’s grid space, whereas single points are only extracted from fields that can contain

local errors. Point verification is therefore especially difficult to judge when the forecasts

are produced with a horizontal resolution of 0.45 deg (~45km), as it was in this project.

Another point is that the uncertainty estimate of the forecasts is of major importance

for system operators, such that the focal point was to investigate the benefits of prob-

abilistic forecasts. In this study, the spread of the ensemble is defined as the standard

deviation from the mean. It will be shown that the size and the spread is a parameter

of importance when evaluating the sensitivity of the results.

It was found that it is not of benefit to leave out ’bad’ members in the verification,

because they add value to the spread of the ensemble and hence the estimate of the
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uncertainty. The quality of the ensemble members is also of great importance, because

of the sensitivity of the model system to the combination of the schemes and the unpre-

dictability of the performance of the ensemble members in certain weather situations

is responsible.

4.6.1 Objective Verification

As described before, a NWP model produces area averages, which are built into the

equations that form the model. The model is however also fed with point observations.

In some areas the density of these observational networks is significantly higher than

the model can represent in its finite grid space and in other areas there are far less

observations than grid points. The state of the atmosphere (analysis) from which all

forecasts are started does also not always contain all available observations. Neverthe-

less, it is unrealistic to expect that a NWP model can do better in average than its

corresponding analysis, except in areas where very few observations exist.

In the case of Denmark, the area is well covered by observations, but the analysis that

was used in the experiments did not use all of them, because the analysis came from a

relative coarse global model, which is not capable of using more than a fraction (in aver-

age 30%) of the available observations near Denmark (see Table 3.1 and Section 2.2.6).

This means that the analysis does not contain all the local extremes in the weather

over Denmark.

The analysis had in some cases quite significant errors in the observation verification

for that reason. The fact that the verification of the forecasts is done directly with the

observations means that the errors of the forecasts also include the error of the analysis.

This needs to be taken into account when analysing the results.

The verification was done with the following parameters:

- 10m wind speed (v10s)

- model level wind speed at approx. 30m (u31,v31)
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- potential wind power (pot) with a standard power curve computed from mean sea

level pressure (mslp) and 10m wind speed (v10s)

- wind power pwr (pwr) with site specific power curves

The advantage of the combined mslp and v10s in the potential power is that the flat

parts of the power curve contribute less to the error than the steeper parts (see Fig-

ure 2.3). An error in the predicted wind speed is very critical at 9 m/s and less critical

at 18 m/s unless a major part of the turbines are in bigger farms where the power curve

is rather flat. The forecast error (bias) is defined according to Figure 3.1 to the sum of

a local error and the model error:

F − Fobs = (Fana − Fobs) + (F − Fana) (4.1)

where (Fana − Fobs) is the local error and (F − Fana) is the model error.

The assumption behind this splitting is that a forecast can never be better than its

corresponding analysis and that the goal is reach an accuracy close to that of the

analysis. In pratice this means that it is the analysis that is measured agains the

observations and the forecast is measured against its corresponding analsyis. After it

was found that the local error dominates the observation verification of the 10m wind

and other surface parameters, especially when modelling in the coarser resolutions (e.g.

in a 0.30{circ grid), this splitting was a very useful method to find and study the non-

model dependent error sources. This dominance of the local error has also been shown in

other studies (Moehrlen et al., 2001,2002 and Jørgensen et al. 2001, 2002). To improve

the local error statistics, it was demonstrated that increased model resolution helps.

The computational cost of high resolution modelling is however significant compared

to the improvements that can be achieved.

On the other hand, the ultra short-range forecasts are typically close to the analysis in

accuracy and considered accurate enough for wind power prediction. This is referred

to as the minimum forecast error, and the goal is to reach this level of accuracy. The

technique that is developed and applied in this work is however only the beginning
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towards this target. The remaining 50% of the error has to be captured by making use

of the uncertainty estimate. A reasonable strategy in a ”real” environment could be to

classify the periods were forecasts are reliable and periods with high uncertainty. In the

periods where the forecasts are reliable, high resolution nested models can be applied to

increase the accuracy of the wind parameters. In periods of high uncertainty the errors

can be reduced by using the ensemble mean, which is a smoothed average. The target

of reducing the mean error of forecasts by 50% toward the minimum forecast error by

the ensemble approach can become realistic with this method and would mean a large

step forward.

4.6.2 Verification Parameters for the Ensemble

Standard statistical parameters are used to verify the ensemble prediction system to-

gether with a parameter typical for ensemble prediction verification. In this develop-

ment phase it was found that using standard statistical tests reduces the uncertainty in

the interpretation of the data. The verification therefore took place with the following

parameters;

• Bias

• Standard Deviation

• Root Mean Square error

• Variance

• Skill Score

The standard deviation, root mean square error and bias are the statistical measures

for the performance of a model and will therefore not be explained in more theoretical

detail. The equations can be found in the Appendix B. The variance is an ensemble

spread measure. This should be closely related to the standard deviation and be of

the same magnitude. The skill score is a widely used parameter to compare the skill
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of different forecasts (e.g. Wilks, 1995; Mylne, 2000). It is a direct verification of a

forecast against a reference forecast and a perfect forecast. The reference forecast is

usually a standard forecast such as persistence or climatology. In this case, the analysis

is used as the perfect forecast:

ss =
fcref − fc

fcref − fcana

(4.2)

where fcref is the reference forecast, fcref is the perfect forecast.

The skill score has a maximum value of 1 (or 100%) for a perfect forecast and 0%

for a performance equal to the reference forecast. The skill score has no lower limit.

This means that negative values represent lower scores than the reference forecast. In

this study the reference forecast is constructed to simulate the Danish Meteorological

Institute’s operational Hirlam setup (year 2001).

Figure 4.5: Verification Sites in Denmark
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This was used to have a measure of the performance relative to the data that is used

currently by Eltra. As perfect forecast a 1h to 6h forecast was chosen. In fact, verifi-

cation took place with two perfect forecasts, where different model configurations were

used.

The ensemble mean and a weighted mean are computed in the verification itself. The

weight coefficients are computed as a ratio of an area averaged standard deviation over

the entire period. An best guess and a weighted best guess are computed with the pmt-

filter algorithm and a deterministic forecast is added. A so called winner-of-the-day is

computed, which reflects the potential of the ensemble. This is of course only a reference

and only possible in historic mode. It should give an indication of the potential accuracy,

if the EPS classification was capable of choosing the best member of the ensemble. The

control forecast (ctrl) is the ensemble member that provides boundary data to the

deterministic forecast. The analysis is also included. The reference forecast is used to

rank the ensemble members and to quantify the improvement of the approach.

The verification is conducted with and for 50 + 6 = 56 members. Statistical output is

obtained for 12 Danish wind farms (eltra), 7 synoptic stations (dk), 5 Irish wind farms

(irl) and 3 Irish wind masts (ucc) (see Figure 4.5 and 3.5 in Chapter 2).



Chapter 5

A Multi-Scheme Ensemble

Prediction System to forecast Wind

Power

In the previous chapter the benefits of using ensemble predictions were discussed and

the design of an ensemble prediction system described. In this chapter actual forecasts

from that ensemble prediction system (EPS) over a three month period are presented

and verified. There are large amounts of data and parameters to be evaluated from

an experiment over three months with 4 times 50 forecasts per day. Therefore, only a

selected fraction of the results can be presented here. The focus in this evaluation is

on the wind speed and wind power at 27 stations dispersed over Denmark and Ireland.

Skill score, standard deviation and variance are the statistical parameters that will be

shown and discussed. The root mean square error has been neglected in this verification,

because the focus of the evaluation was on a period of time and not on individual days,

such that the root mean square error equals the standard deviation.

5.1 Quality of the Ensemble Predictions System

The verification of the ensemble prediction system first focused on the quality of the

individual ensemble members. This is an important aspect for the applicability of the

106
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approach and probabilistic products resulting from the ensemble prediction system.

The second part of this section focuses on the performance of the ensemble system in

general. One important aspect in this investigation was the implications on the size of

the ensemble and the selection of the applied perturbations on the performance of the

entire system.

5.1.1 Quality of the individual Ensemble Members

The quality verification of the individual ensemble members commenced by investigat-

ing how well the individual ensemble members perform. To assess this and also the

performance of the approach, the best member of the period for each of the 27 sta-

tions was computed. Note, that this is only possible in historic mode, where the actual

recorded values are already known.

It was found that there was no obvious pattern of best members over the period at any

of the stations. In fact, when plotted against each other, the correlation of members

with best forecasts was found to be a random distribution of points at all stations. It

can be concluded from this investigation that the quality of the individual members

can be considered as equally good in long term statistics. It should be noted however,

that certain members produced better results during certain weather conditions than

others.

It was also observed, and will be shown in the following paragraphs, that the extension

from 50 members to 100 members by including the forecasts produced 6h earlier (at

00h UTC) did not increase the quality of the ensemble. This indicates that the quality

of the ensemble is a result of the best selection of ensemble members rather than the

size of the ensemble system. It will in fact be shown that the wrong selection strategy

can decrease the quality of the ensemble products such as the best guess.
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5.1.2 Overall Performance of the Ensemble Prediction System

The performance of the ensemble system has been evaluated by computing skill scores.

The skill score is a measure of the gain in predictability according to Equation 4.2.

The tables that contain the statistical results of the verification for the individual 27

stations can be found in Appendix E. In this chapter the focus will be on area and

country averages with reference to the tables in the appendix for some selected cases.

The skill scores averaged over the Danish and Irish areas are summarised in tables for

wind speed and wind power. The station ”denmark” is the average of the ”eltra” area

and the ”synop-dk” area, ”ireland” is the average of the Irish wind farms ”windf-irl”

and the UCC masts ”ucc”. Note, that ”denmark” and ”ireland” are averages of the

output statistics of the areas. For the statistics of the areas ”eltra”, ”synop-dk”,”windf-

irl” and ”ucc” the parameters (wind speed and wind power) have been averaged before

the statistics are applied. These sites therefore represent upscaled values. They are re-

ferred to as area averages, whereas ”denmark” and ”ireland” are country averages. The

column with skill scores represents the normalised error (=standard deviation/mean)

for the site. Thus, high values indicate mostly erroneous observations. In a few cases

the errors are also a results of systematic errors in the model system. This means that

the statistical numbers presented in this work are all based on infinite error tolerance.

The wind power is presented in unit kW for the Irish stations, such that the statistical

parameters take on higher values. The small values in the analysis column are a quality

control of the two analyses used in the computation of the skill scores (see also sec-

tion 4.6.2). The threshold value for the quality check was set to 1 and was only slightly

above that value for wind power at the Danish synoptic stations .
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Figure 5.1: Skill Scores for 50 Member Ensemble integrated over the Danish and Irish

Area. Plot (a) shows results with raw pmt-filter, plot (b) shows results with weighted

parameters using the forward-backward pmt-filter

For the other statistical parameters (stdev, variance), the first column represents the

results for the analysis and gives a measure of how well represented a certain station is

by the model. In a few cases it was however found that the best member was superior

to the analysis, the mean or the reference forecast. In these cases it is believed that the

resolution of the analysis is too coarse to represent orographic features correctly, which

is always a problem when verifying at specific points. The second, third and forth

columns give the scores of the best member (winfc), the mean, the weighted mean,

which includes long term statistical coefficients or weights for the individual members

(wmean), respectively. The fifth and sixth columns (in the case of 100 members) repre-

sent the probabilistic forecasts from the ensemble computed with the pmt-filter, which

are referred to as the best guess (bg), and the weighted best guess (wbg), which included

forward-backward stepping.
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Figure 5.2: Skill Scores for 100 Member Ensemble integrated over the Danish and Irish

Area. Plot (a) shows results with raw pmt-filter, plot (b) shows results with weighted

parameters using the forward-backward pmt-filter

Figure 5.1 and Figure 5.2 correspond to Table 5.1 and Table 5.3, respectively. These

show the area integrated skill scores for 50 Members for wind speed and wind power.

It can been seen in Table 5.2 and Table 5.4, that using 100 members does not necessarily

increase the skill scores. This is because the forecast error increases linear with forecast

length, and hence the forecasts starting 6h earlier incorporate a larger error. This error

can only be removed by applying weight coefficient from longterm statistics. The effect

of these weight coefficients is reflected in the results from the weighted mean in wind

speed and in wind power.
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para site ana winfc mean wmean bg

skill denmark 0.19 28.27 21.72 22.55 13.21

ireland 0.23 39.76 29.62 24.55 8.42

eltra 0.16 25.50 16.28 21.59 8.73

synop-dk 0.22 33.39 31.76 24.33 21.49

windf-irl 0.24 39.88 28.54 20.55 20.91

ucc 0.21 39.72 30.06 26.20 3.27

stdev denmark 1.22 1.47 1.49 1.49 1.52

ireland 1.80 2.06 2.11 2.13 2.20

eltra 1.28 1.61 1.65 1.63 1.69

synop-dk 1.16 1.32 1.32 1.34 1.35

windf-irl 1.85 2.01 2.04 2.06 2.05

ucc 1.75 2.12 2.18 2.20 2.34

var denmark 2.93 3.08 3.11 3.10 3.10

ireland 3.80 3.72 3.93 3.93 4.02

eltra 3.48 3.60 3.70 3.66 3.70

synop-dk 2.38 2.56 2.52 2.54 2.49

windf-irl 3.69 3.51 3.78 3.79 3.82

ucc 3.91 3.93 4.07 4.08 4.21

Table 5.1: Summary of the statistics of wind speed with 50 ensemble members. The

abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,

’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess

In the Eltra area, the scores of the weighted mean are better than the mean of the

ensemble in 11 out of 13 stations. In the Danish Synoptic stations the weighted mean

has lower skill scores at only one station (Taasinge). In Ireland, the weighted mean has

lower skill scores particularly at the wind farms, but better skill scores at the masts. In

the comparison to the entire area, the skill scores of the weighted mean are lower than

the skill scores for the mean.



Chapter 5 A Multi-Scheme Ensemble Prediction System to forecast Wind Power 112

para site ana winfc mean wmean bg wbg

skill denmark 0.19 27.81 17.80 22.22 8.82 16.45

ireland 0.23 36.46 27.59 24.71 6.20 24.33

eltra 0.16 24.86 16.23 20.85 11.16 15.19

synop-dk 0.22 33.25 20.69 24.74 4.51 18.77

windf-irl 0.24 34.79 34.63 20.13 8.72 29.57

ucc 0.21 37.12 24.78 26.55 5.18 22.23

stdev denmark 1.23 1.47 1.51 1.49 1.54 1.51

ireland 1.80 2.07 2.10 2.11 2.19 2.12

eltra 1.29 1.62 1.66 1.64 1.68 1.66

synop-dk 1.16 1.32 1.35 1.35 1.39 1.36

windf-irl 1.86 2.01 2.01 2.05 2.07 2.03

ucc 1.75 2.12 2.19 2.18 2.31 2.21

var denmark 2.94 3.10 3.10 3.12 3.08 3.10

ireland 3.81 3.73 3.82 3.93 3.88 3.82

eltra 3.50 3.61 3.70 3.68 3.66 3.71

synop-dk 2.39 2.58 2.50 2.55 2.50 2.49

windf-irl 3.70 3.52 3.65 3.79 3.71 3.66

ucc 3.92 3.94 3.98 4.08 4.06 3.98

Table 5.2: Summary of the statistics of wind speed with 100 ensemble members. The

abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,

’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess

The reason for that seems to be the fact that the coefficients were computed as an

average over the model area. In the danish areas these coefficients had positive effects,

whereas in the Irish areas, these coefficients seems to be very dependent on the terrain

and local effects are not captured well enough by the coarse resolution ensemble. Long

term statistics might help in reducing the error at these sites.
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5.1.3 Statistical Performance Tests

When summarising the statistical performance tests, it can be concluded that the skill

scores for wind speed varied between 20% and 30% for the mean and weighted mean in

both areas (Denmark and Ireland). This indicates a gain in predictability of approxi-

mately 10h-15h relative to the reference forecast.
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Figure 5.3: Standard Deviation of all stations for 100 members for wind speed including

the weighted best guess

Expressed in standard deviation this corresponds to values ranging from 1.0 to 2.5 in

average, which was found to around 1.5 in Denmark and slightly above 2.0 in Ireland.

For wind power the standard deviation is slightly lower, reaching from 0.8 to 2.0 in

average, whereas it is slightly over 1.0 in Denmark and close to 2.0 in Ireland. The

results of standard deviation including the weighted mean can be seen in Figure 5.3

and Figure 5.4, which summarises these results.



Chapter 5 A Multi-Scheme Ensemble Prediction System to forecast Wind Power 114

 0

 0.5

 1

 1.5

 2

 2.5

 3

S
ta

nd
ar

d 
D

ev
ia

tio
n

Denmark            Ireland               eltra              synop-dk            wfarms-irl              ucc  

Best Member
EPS mean

EPS weighted mean
best guess

weighted best guess

Figure 5.4: Standard Deviation of all stations for 100 members for wind power including

the weighted best guess

The potential improvement of the ensemble relative to the reference forecast lies between

25% and 40%, with a maximum of 77% and minimum of 2.5%. This indicates a potential

gain in predictability of 15h-20h relative to the reference forecast. The weighted best

guess benefits from the forward-backward stepping in the pmt-filter. Whereas the best

guess shows improvements between 8% and 20% in wind speed, the weighted mean

improves between 15% and 29%. This corresponds to a gain in predictability of 7h-14h

relative to the reference forecast. The standard deviation of the best member and the

best guess lies within the same range as for the mean of the ensemble.

In Figure 5.5 and Figure 5.6 show the differences in standard deviation between the

area average and the individual sites (Eltra area). The variance is in general higher in

the Irish area than in the Danish Area. The values are in the region of two in Denmark

and three in Ireland for wind speed and for wind power. This reflects the fact that the

average wind speed in Ireland is almost 3m/s higher than in Denmark.
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Figure 5.5: Standard Deviation of all stations for 100 members for wind speed including

the weighted best guess from the pmt-filter
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Figure 5.6: Standard Deviation of all stations for 100 members for wind power including

the weighted best guess from the pmt-filter

Figure 5.7 and Figure 5.8 give a more detailed view upon the results in the Eltra area

for both wind speed and wind power. Plot (a) shows the skill scores for 50 members
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and plot (b) shows the skill scores for 100 members including the weighted best guess

(wbg).

para site ana winfc mean wmean bg

skill denmark 0.59 48.66 19.46 24.69 15.71

ireland 0.62 46.22 21.67 21.07 6.32

eltra 0.43 37.96 8.11 20.36 0.81

synop-dk 1.21 77.60 50.17 36.40 56.02

windf-irl 0.66 60.88 24.33 18.58 5.91

ucc 0.58 38.68 20.30 22.35 6.54

stdev denmark 0.91 1.07 1.17 1.15 1.18

ireland 1.61 1.86 1.97 1.97 2.04

eltra 1.07 1.36 1.50 1.44 1.53

synop-dk 0.75 0.79 0.83 0.86 0.82

windf-irl 1.65 1.77 1.88 1.90 1.94

ucc 1.57 1.94 2.05 2.04 2.14

var denmark 1.99 2.19 2.30 2.28 2.29

ireland 3.14 3.20 3.33 3.33 3.41

eltra 2.89 3.04 3.17 3.11 3.21

synop-dk 1.10 1.34 1.43 1.44 1.37

windf-irl 3.05 3.00 3.24 3.22 3.31

ucc 3.22 3.40 3.43 3.44 3.50

Table 5.3: Summary of the statistics with 50 ensemble members for wind power. The

abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,

’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess

A difference between the best guess and the weighted best guess is apparent. Since

the weighted best guess is computed by following trends in the forecasts, this result

confirms that this method is beneficial for interpreting probabilistic forecasts. These

forecasts in fact have skill scores close to those of the mean of the ensemble, which is

above 20% at half of the stations.

In Figure 5.7 Hanstholmhavn however shows a negative skill score for the best member
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and skill sores higher than 100% for Rejsby.

Note, that the skill score has no lower limit and takes on a negative value, if the forecast

has poorer skills than the reference forecast.

Hanstholmhavn is situated directly at the sea and faces the North Sea. In the coarse

resolution of the model, the accuracy of the land sea mask is very poor, which results

in poor performance of the model in general. It is therefore quite possible that the

reference forecast has higher skills than the forecast. In Abild, Broens, Draeby and

Ryaa the skill scores for the best guess of wind speed is negative for the same reason.

para site ana winfc mean wmean bg wbg

skill denmark 0.59 48.23 12.11 24.19 -1.07 2.66

ireland 0.62 42.68 20.26 20.87 -2.71 7.57

eltra 0.43 37.33 4.92 19.57 -9.81 -7.57

synop-dk 1.20 77.73 31.56 36.70 22.56 30.35

windf-irl 0.66 56.69 36.02 17.47 12.50 17.12

ucc 0.58 35.67 12.37 22.57 -10.32 2.80

stdev denmark 0.91 1.08 1.19 1.15 1.23 1.22

ireland 1.60 1.85 1.95 1.94 2.05 2.00

eltra 1.07 1.36 1.51 1.45 1.58 1.57

synop-dk 0.75 0.79 0.87 0.86 0.89 0.87

windf-irl 1.65 1.77 1.83 1.88 1.90 1.88

ucc 1.56 1.93 2.06 2.00 2.19 2.12

var denmark 2.00 2.20 2.30 2.29 2.29 2.34

ireland 3.14 3.20 3.23 3.32 3.33 3.34

eltra 2.90 3.06 3.17 3.13 3.18 3.26

synop-dk 1.10 1.35 1.42 1.45 1.41 1.41

windf-irl 3.06 3.01 3.13 3.22 3.19 3.22

ucc 3.22 3.40 3.33 3.42 3.47 3.47

Table 5.4: Summary of the statistics with 100 ensemble members for wind power. The

abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,

’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess
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In Rejsby all variables (best member, mean, weighted mean, best guess) of the ensemble

have better scores than the perfect forecast, which means that the skill score is higher

than 100%. This is due to noise in the initial conditions of the perfect forecast. At

station ”multi” these stations are therefore excluded. Apart from this the area ”multi”

resembles the ”eltra” area.
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Figure 5.7: Skill Scores of wind speed for all stations in the Eltra area. Plot (a)

shows results with raw pmt-filter (50 members), plot (b) shows results with weighted

parameters using the forward-backward pmt-filter (100members)

Figure 5.9 gives a more detailed view upon the results in the Danish synoptic stations

for both 10m-wind speed. For wind speed it shows in 5 out of 7 stations negative skill

scores for the best guess. The weighted best guess on the other hand is in all tests

positive and lies between 10% and 30%. As mentioned before, the skill scores are 60%

for the best guess and 77% for the weighted best guess in Taasinge, which seems to

be a result of instabilities in the pmt-filter under certain conditions, where it follows a

wrong trend.
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Figure 5.8: Skill Scores of wind power for all stations in the Eltra area. Plot (a)

shows results with raw pmt-filter (50 members), plot (b) shows results with weighted

parameters using the forward-backward pmt-filter (100members)

This problem seemed to be solved by considering the past trend with the forward-

backward stepping. The function did not explode and the results are in line with the

results for the ensemble mean (see graph). This was however not the case for wind

power, where the weighted best guess is only superior to the best guess in two cases.

In Aarhus, Gedser and HvideSande a wind power potential was computed from 10m

wind speed, where the best member of the ensemble and the reference forecast are

better than the analysis and which resulted in values above 100% or below zero. There

are no measurements of wind power available at these stations, such that a further

analysis of the results in power space was not possible.



Chapter 5 A Multi-Scheme Ensemble Prediction System to forecast Wind Power 120

 0

 20

 40

 60

 80

 100

S
ki

ll 
S

co
re

 [%
]

  synop-dk     Aarhus     Fredrikshavn      Gedser      HvideSande     Jaegersborg     Skydstrup     Taasinge

(a)

 0

 20

 40

 60

 80

 100

S
ki

ll 
S

co
re

 [%
]

  synop-dk     Aarhus     Fredrikshavn      Gedser      HvideSande     Jaegersborg     Skydstrup     Taasinge

(b)

Best Member
EPS mean

EPS weighted mean
best guess fc

weighted best guess fc

Figure 5.9: Skill Scores of wind speed for all stations at the Danish Synoptic Stations.

Plot (a) shows results with raw pmt-filter (50 members), plot (b) shows results with

weighted parameters using the forward-backward pmt-filter (100members)

5.2 The Uncertainty Estimate

As described in the project description, the graphical interpretation of the uncertainty

estimate is a convenient way of getting overview over the forecast quality. The contour

plots show the probability of the ensemble towards a certain outcome. Box plots on

the other hand are a convenient way to describe the statistics of a sample of data in a

graphical way. In verification mode, the observations and analysis can also be added

(in both plotting techniques). In forecast mode only the EPS mean, the weighted mean

and the best guess would be displayed with lines. The difference in performance of the

best guess against the EPS mean, EPS weighted mean, the observations or analysis can

however only be estimated with long term statistics.

As described in detail in the previous chapter, the pmt-filter takes the time development
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into account, such that a trend of the most likely group over the last hours is followed.

This was shown in the example Figure~\ref{ryaa}, where it was demonstrated that the

forecasts actually fall into different groups, when the uncertainty is high. In these cases

the groups tend to remain for a couple of hours. The curve for the ’best guess’ is then

following the point with the highest probability from time step to time step.

5.2.1 Interpretation of the Uncertainty Estimate

Even though Figure 4.3 and Figure 4.4 were only examples of one forecast for one

site, these plots contain all necessary information about the uncertainty estimate. The

graphical interpretation is useful for specific sites, but also for area integrals and for

practical applications this eases the interpretation of the uncertainty significantly.

The goal of this study with regard to the quality of the ensemble was to verify, whether

the present ensemble can produce enough spread to ensure that the actual occurrence

of a certain weather parameter (”truth”) lies within the ensemble spread. If this is

the case, the ensemble fulfils the requirements, which were set in the beginning of the

study.

An objective way to verify the uncertainty estimate is to measure the correlation of

the spread of the ensemble with the error of the ensemble mean. This correlation has

been computed for area integrated wind speed and wind power and is for both areas

Denmark and Ireland 0.93. Table 5.5 gives an overview and shows the improvement

and hence benefit of using a bigger area. When averaging over the North Sea the

correlation increases to 0.97 for wind speed and 0.96 for wind power. The correlation

is hard to interpret on a single site, because it consists of a local error and a large scale

meteorological error. The local error can not be separated except with a horizontal

summation over sites before computing the correlation.

This method has also been used by Stendsrud et al. (1999) and Hamill and Colucci

(1998). In both studies the NCEP ensemble system with the Eta-Model and the RSM

(Regional Spectral Model) for short range prediction was used. Both studies found
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area wind speed wind power
Denmark 0.94 0.94
Ireland 0.92 0.92
North Sea 0.97 0.96

Table 5.5: Summary of the area averaged correlation of ensemble spread and ensemble
error

that there was little correlation between the spread of the ensemble members and the

accuracy of the ensemble. And in both cases the conclusion was that the lack of corre-

lation between spread and forecast uncertainty presents a challenge to the production

of short-range ensemble forecasts. In that respect the correlation of more than 0.93

that was achieved over the 3 months period seems to present a significant result in the

area of short-range ensemble prediction. Subjective analysis of the uncertainty estimate

throughout the entire period confirmed this method as a realistic measure of the EPS

system’s ability to predict the uncertainty of the forecasts.

5.3 Control forecast and Deterministic forecast

The deterministic forecast is a downscaling of the control forecast from 45km horizontal

resolution to 5km. It was first planned to run a deterministic forecast in a fully dynamic

way by choosing each day the member with the highest probability to catch the weather

situation of the day. The problem associated with this procedure is that each member

has a different long term bias. When using the output of the deterministic forecasts, this

bias has to be subtracted. Because of the short integration period of three months the

bias corrections would not have been accurate enough. Therefore, the downscaling of

the control forecast took place for one selected member of the ensemble. The selection

criteria included the average skill scores, stability of the model and the execution time.

Results from these deterministic runs in the Eltra area and the Irish area are shown in

Figure 5.10.
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In average the improvement in skill scores of the deterministic forecast is only 5% for

the Eltra area and the Irish masts (ucc). The small improvement is the result of aver-

aging. It can be seen in the graphs, that there are some sites, where the deterministic

forecast improves 20-30% in skill scores and other sites, where there is no or very little

improvement. As mentioned before, some of the sites (e.g. Abild, Broens, Lendrum

and Ringaskiddy) showed negative skill scores for the control forecast, which is also

reflected in some of the deterministic forecasts.

One station (Hanstholmhavn) also had lower skill scores for the deterministic forecast

than for the control forecast. All these cases are a mixture of bad observations, lack of

ability of the model to resolve the terrain and local effects that are not captured by the

model. These phenomena have not been studied in more detail, because these effects

have been investigated in Chapter 2 and 3. It was shown that most extreme events

can only be captured with a very high resolution model (e.g. 1.4km) and in some cases

manual adjustment of the model’s orography to account for local effects was necessary

(see also Moehrlen et al, 2001, 2002).

At the Irish wind farms the analysed forecast show less accuracy than the reference

forecast, ensemble mean and some of the ensemble member’s forecasts. In these cases

the coarse resolution of the analysis cannot resolve the complexity of the terrain, and

there are too few observations in the Atlantic. Therefore, the skill scores are higher than

100% in Bessybell and in the Irish average (irl). In Kilronan, Milan Hill and Tursillagh

there are improvements in skill score of approx. 30%. In Lendrum and Kilronan the

model can also not resolve the complexity of the terrain at the coarse resolution and as

a consequence the control forecasts are of rather poor quality.

5.4 Skill of the Multi-Scheme EPS Experiment

The goal of this experimental study was to demonstrate the benefit and improvement of

the forecast quality from an ensemble prediction system in comparison to a deterministic

forecast and the very short-range analysis (0-6h). It is not possible to compare the
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results with those from other studies such as Mylne et al. (2000), Evans et al. (2000),

Stensrud et al. (1999), Hamill et al. (1998) or Buizza et al. (2001), because in

these Brier Scores on non-local fields such as 500HPa, 850HPa geopotential height,

temperature, mean sea level pressure or precipitation have been used. The difference

between Skill scores, which will be used n the following analysis, and Brier scores is

that the Brier Scores are a measure of the mean square error of probabilities.

That is, the Brier Scores take on a value of 1, if the event occurs and a value of 0, if it

does not. Hence, this method depends on the size of the bins and is therefore unsuitable

as a measure of wind speed or wind power. The skill scores measure the error relative

to a reference forecast and an analysis.

In this study, the skill score is based on the standard deviation. This means that in

the computation of the skill sores the error of the forecast compared to the observation

is measured and then compared to the corresponding error measures for the reference

forecast and the analysis (see Equation 4.2). By using the skill scores, the gain in

predictability was found to be 9-12 hours.

The improvement in skill scores reaches from only 8% for the best guess of the wind

speed in the Irish area to up to 50% for the best guess of the power prediction averaged

over the Danish Synoptic stations. The potential of the EPS measured as the best

member of the ensemble is in average around 40% in skill scores. The best guess derived

from the pmt-filter is in average around 20% in skill scores for the forward-backward

algorithm (wbg), whereas it is almost impossible to average the plain best guess. The

results showed the entire spectra of the skill scores up to 38%. This nevertheless means

that a gain in predictability of at least 9h was achieved.

For stability reasons it was found to be crucial to take the past and the future into

account in the selection procedure for the best guess. Since the best guess is a so-called

probability product (also referred to as uncertainty estimate earlier in the document),

it was important to derive an algorithm that is relatively stable. This meant in fact,

that the dynamic selection of this product had to be limited to some extend.
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Figure 5.10: Skill scores (ss) of control forecast and deterministic forecast for 50 mem-

bers. Plot (a) shows ss of wind speed for the Eltra sites, plot (b) shows ss for wind

speed for the Irish sites, plot (c) shows ss of wind power for the Eltra sites and plot (d)

shows ss of wind power for the Irish sites

Especially when the uncertainty of the forecast was high, such as in cases where there
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are two or more clusters of members that showed a certain development, it became

crucial that the selection procedure followed the trend from the previous selection. The

deterministic forecast has in average around 10-20% higher skill scores than the control

forecast. This can be accounted to the model resolution increase from 0.45◦ to 0.05◦,

even though it seems that the loss in accuracy is recoverable by the ensemble.

To summarise, the purpose of this study was to demonstrate the value and the benefits

of a short-range ensemble system over a single deterministic forecast with respect to

a very special end user. To verify a system in historic mode against an operational

system can never be a fair comparison. Therefore, it should be emphasised that this

study fulfilled its goal to demonstrated that the main improvements of forecasts were

not achieved by only improving one individual member, but by the sum of the ensemble

members and a suitable selection procedure.



Chapter 6

Conclusions

This thesis identified the main problems in wind speed and wind power forecasting

and demonstrated how the current forecasting accuracy can be improved to overcome

many of these problems. The research carried out in this work revealed that wind

energy is such a demanding area with respect to forecast accuracy that there is an

urgent need for new prediction methods to be investigated and applied. Two extensive

numerical experiments with a weather prediction model have been undertaken to verify

this statement:

• Deterministic Forecasts with various horizontal resolutions

• Ensemble Forecasts with a Multi-Scheme Ensemble Prediction System

The first experiments dealt with the requirements for the accuracy of wind power fore-

casts by applying deterministic forecasts in various horizontal resolutions. None of the

applied resolutions could however satisfy the specified requirements. In other words,

increasing the resolution did not reduce the forecast errors, not even at resolutions of

5km or 1.4km. This is in line with the results from Zhu et al. (2001), which indicate

that using the same computational resources, potentially more economic benefit can

be gained from generating an ensemble of forecasts than from increasing the horizontal

resolution of the control forecast. The conclusion from these experiments was therefore

that the forecast error needs to be quantified, if it is not possible to reduce it.

127
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Knowing the uncertainty of the forecast can balance the lack of accuracy in decision

making environments such as a transmission system operator. For example, it can be

used to adjust the spinning reserve required to accommodate a percentage of approxi-

mately 10% and more of wind generated electricity into the grid when prediction errors

occur. The required spinning reserve in an electrical market can change from 10% to

100% of installed wind energy capacity within a few hours (personal communication

ELTRA 2003). Hence, there is a significant value in predicting this uncertainty. The

economic value of a reduced spinning reserve is proportional to the installed wind en-

ergy capacity unless there is a good interconnection to another electricity grid, enough

storage capacity or other energy sources e.g. hydro energy to match the spinning re-

serve requirements. In addition to the economic value of the forecast uncertainty, a grid

security aspect is connected to the wind resource characteristics and the concentration

of installed wind power.

To improve the wind power computation and to take advantage of all the variables

predicted in the weather prediction model, the wind power prediction was integrated

into the numerical model. This simplified power conversion module using standard

power curves from wind turbine manufactures has been verified in this work. It was

most important to proof the potential of this approach and discuss further developments

into this direction. The EU 5th Framework project HONEYMOON 1 is using this

approach as a basis for further development of the initial power prediction tool with an

efficiency based power prediction and a statistical power curve analysis tool.

In the first experiment campaign, three major error sources have been identified. These

are:

1. Lack of Accuracy of Boundary Layer Winds

2. Random Model Errors

3. Phase Errors of Lows and Fronts
1HONEYMOON stands for ”a High resOlution Numerical wind EnergY Model for On- and Offshore

predictions using eNsemble predictions”. It is a 2 year CORDIS FP5 project (2003-2004) with contract
No. ENK5-CT-2002-00606.
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A possible solution to these problems was suggested by using ensemble predictions.

Another aspect that pointed strongly towards using an ensemble of forecasts, is the

goal to reduce economic risks in resource studies and to assist wind power to become

economically competitive within liberalised markets.

Such an ensemble of forecasts naturally offers a multitude of decision levels compared

to a single decision based on a control forecast. In statistical terms this means that

an ensemble of forecasts provides detailed probability distributions instead of only two

levels of probabilities. It is known that a multiple value probability forecast can be

constructed based on a single deterministic forecast, using past verification statistics

(Toth and Kalnay 1997, Zhu et al. 2001). Such a system can produce statistically post-

processed, bias free probabilistic forecasts, but only on a single decision level. Toth et

al. 1998 even argues that statistical post-processing of some sophistication applied on

a control forecast system may be able to capture part of the day to day variations in

predictability, but it is not likely that all information that affects predictability (i.e. case

dependent initial errors and their evolution in the forecast) could be captured through

statistical approaches. Zhu et al. (2001) conclude in their study on the economic value

of ensemble based weather forecasts that the reason for the ensemble to perform better,

even though a control forecast was supplemented by a detailed probability distribution,

must be due to some genuine information contained in the ensemble but not in the

control based distributions. Smith et al. (2001) came to similar conclusions in their

complex economic value analysis addressing hypothetical applications in the electricity

sector.

With this background a 50-member Multi-Scheme Ensemble Prediction System (EPS)

was developed and verified over a 3 month period against 12 Danish wind farms, 7

Danish synoptic stations, 5 Irish wind farms and 3 Irish wind masts. This multi-scheme

approach was however especially designed for the wind energy market. The basis in

the design of the ensemble members was the fact that atmospheric processes, which

involve condensation and turbulence, contribute significantly to the error in the wind

power predictions. Additionally, the difference of the ensemble members was designed
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to attack the models inaccuracy regarding simulation of fronts and the friction between

the air and the surface. In that way it could be demonstrated that the ensemble system

provides a range of possible forecasts, if the weather development is uncertain. An

implicit forward-backward stepping algorithm, the pmt-filter, was also developed in

this work to analyse the ensemble members and to compute an uncertainty estimate

for the forecasts.

Toth and Kalnay argued already in 1997 that the ensemble distribution may be centred

closer to the truth than the distribution based on a single forecast due to nonlinear

effects. This statement can be confirmed with the Multi-Scheme Ensemble, where it

was demonstrated that an improvement in forecast skill from 8%-20% for the optimal

forecast of wind speed could be achieved with the ensemble system in the Irish area.

Around 20% was achieved for the optimal power prediction averaged over the Danish

synoptic stations. This means that a gain in predictability of 9-12h in a 48 hour forecast

was achieved.

The goal of this work was to demonstrate the benefit and improvement with respect to

a control forecast and the very short-range analysis (0-6h). This goal was achieved as

gain in predictability of at least 9h and confirms again Toth and Kalnay’s statement

(1997) that an ensemble distribution may be centred closer to truth than a distribution

based on a single forecast.

An objective way to verify the ensemble system in its capability to predict the un-

certainty of the forecasts is to measure the correlation of the spread of the ensemble

with the error of the ensemble mean. This correlation has been found to reach a cor-

relation of 93% for Denmark and Ireland and a correlation of 97% for wind speed and

96% for wind power when averaging over the entire North Sea area. According to

the studies carried out by Stendsrud et al. (1999) and Hamill and Colucci (1998) the

lack of correlation between spread and forecast uncertainty presents a challenge to the

production of short-range ensemble forecasts. Both studies found that there was little

correlation between the spread of the ensemble members and the accuracy of the en-

semble. Even though these studies have already been carried out in 1998 and 1999, no
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other publications of similar contents in the short-range forecasting area that indicated

further development has been found since. Therefore, it is believed that the results

of the multi-scheme ensemble presents a large step forward in the area of short-range

ensemble forecasting.

The presented work has also shown events that were not predicted very well. There

are many possibilities to test the ensemble system and potential improvements by, for

example, adding more perturbations to the initial conditions. The implementation

of the system into a daily schedule to gain more experience in end-users operational

environment could also be beneficial.

The main conclusion from this work and recommendation for further studies is to

concentrate the forecasting of wind speed and wind power in first instance on the pre-

dictability of the weather situation. If the uncertainty of the forecast can be quantified

with a certain accuracy, an end-user can take advantage of that knowledge, such that

further steps to increase the accuracy of an individual prediction is then of second order,

even though it was demonstrated in this work that the ensemble in fact improved the

accuracy of the forecasts.

These findings are in line with the conclusion of Zhu et al. (2001), that the added

benefits of an ensemble of forecasts is derived from (1) the fact that the ensemble

provides a more detailed forecast probability distribution, allowing the users to tailor

their weather forecast related actions to their particular cost/loss situation, and (2) the

ensemble’s ability to differentiate between high and low predictability cases, which has

also been discussed in Section 1.2 in this work.

To link these two tasks dynamically can provide a realistic way forward to meet the

accuracy requirements of wind energy forecasting in the future, thereby assist in in-

creased deployment of wind energy worldwide and in the competitiveness of wind as a

green energy source.
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6.1 Recommendation for future Research

The following is a list of possible research topics for the future.

• Development of the pmt-filter into the third dimension (space) to adopt the algo-

rithm for parameter fields from the NWP output

• Verifying the pmt-filter with Medium Range Ensembles (e.g. ECMWF, NCEP)

• Testing the performance of the EPS in higher resolution for improved accuracy

of the surface winds

• Developing efficiency based power curves for the wind power module

• Developing a wind farm deployment index from the EPS data for sites with good

wind resources that are also predictable

• Developing and/or linking a decision making model for the electricity market to

the ensemble predictions and verifying it with the produces EPS data

• Developing and linking a decision making model for a system operator to the

ensemble predictions and verifying it with the produces EPS data

• Use the ensemble data to investigate the predictability of other Renewable Ener-

gies (Solar, Hydro, etc.) and the possibilities of linking these to wind energy

• Use the short-range ensemble data to verify, whether the method can also be used

as hydrological forecasts for emergency management and water resources decision

making

• Developing a safety index for offshore wind farms for the installation and main-

tenance phases
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Appendix A

Mathematical Formulation of the

Probabilistic Multi-Trend Filter

In the first step the vectors fc (forecasted values) and cw (weigth coefficient) are coupled

in time-space to take the past and future development into account. The coupled terms

are solved in an implicit iteration process and then decoupled again. The iteration

algorithm uses forward-backward stepping. At present a filter is applied that iterates

three times to smooth the function. The width of the time window is from -k to +k.

fcp(i, j) = f̃ c(i, j) − 1

neps

·
neps∑
m=1

fc(m, j) (A.1)

where i = 1, 2, ...neps is the number of ensemble members, j is the time step variable

or data dimension of each ensemble member, f̃ c(i, j) is updated after each iteration

process of the pmt-filter algorithm.

The deviation of the ensemble to the mean is computed as

∆fc(i, j) =
k∑

l=−k

(∆fcp(i, j + l) · A(l)) (A.2)

i = 1, 2, ...neps and j = 1, ...fclen (fclen is the forecast length) and l = −k, (−k+1), ...k,

A(l) is a weight function in the interval -k to k.

As mentioned before, the weight function cw is also coupled in time and a time-

integrated ensemble deviation from -k to +k steps is computed. It is decoupled after
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the integration process to the actual time step. The coupling of the weight functions is

done by

cw(i, j, k) =
k∑

l=−k

(cwp(i, j + l, k) · A(l)) (A.3)

where i = 1, 2, ...neps, j = 1, ...k and l = −k, (−k + 1), ...k, A(l) is a weight function in

the interval -k to k.

The two parameter ∆fcp and cwp are passed into the implicit algorithm to compute

the probability distribution and the best member (fcoptimal). Note, that the weighting

factor cwp was in the first step estimated from a long-term statistical coefficient. If

this is unknown the coefficient can be set to 1. After the first iteration process cwp is

updated with c̃w over the full forecast length and decoupled by inverting the weight

function A(l).

cwp(i, j, k + 1) =

fclen∑
l=0

(c̃wp(i, j + l, k) · A−1(l)) (A.4)

where fclen is the forecast length.

The optimal forecast foptimal is computed inside the pmt-filter algorithm. The weighted

optimal forecast is also computed inside the pmt-filter algorithm, but from the updated

∆̃fcp:

f̃ copt(j) = fcoptimal(j) +
1

neps

·
neps∑
m=1

fc(m, j) (A.5)

and

f̃ cwopt(j) = ∆̃fcp(j) +
1

neps

·
neps∑
m=1

fc(m, j) (A.6)

In the algorithm, the ensemble forecasts are first evaluated according to their probability

density. The sums, minimum, maximum and the mean of the forecasts is initialised:

wmin = min[fceps(i)] i = 1, 2, ..neps (A.7)
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wmax = max[fceps(i)] i = 1, 2, ..neps (A.8)

fcmean =
1

neps

·
neps∑
i=1

feps(i) i = 1, 2, ..neps (A.9)

csum(n) =

neps∑
i=1

(cwp(i) ·B(n, i)) (A.10)

fcsum(n) =

neps∑
i=1

(cwp(i) · fceps(i) ·B(n, i)) (A.11)

The index n corresponds to the number of intervals or bins in the probability distribu-

tion, B(n, i) is the bin-matrix that defines, which members are in the n bins b. It is

defined as

B(i, n) =


1 for b(n + 1) > n > b(n)

0 otherwise

(A.12)

where the bin b(i,n) is defined as

b(i, n) =
wmax − wmin)

ny

· n + wmin (A.13)

with ny being the number of bins. The probability density peps can be calculated as

peps(n) = 100 · csum(i1)

sumcw

for n = 1, 2, ...ny (A.14)

where sumcw is the sum of the weight coefficients

sumcw =

neps∑
i=1

cwp(i) (A.15)

The pmt-filter function fstrip is used for the selection procedure of the optimal forecast.

The intervals for the integration of the probability density function peps are defined by

fstrip. In other words, if feps is within the interval zmin1 and zmax1, j=1 and fstrip is the
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sum of all weights in this interval. If feps lies within the interval zmin2,zmax2, j=2 and

fstrip is the sum of all weights in this interval.

fstrip(j) =

ny∑
i=1

cwp(i)


j = 1 for zmin1 < feps(i) > zmax1

j = 2 for zmin2 < feps(i) > zmax2

(A.16)

where i = 1, 2, ...neps.

The intervals are renewed in each iteration step and parts of the intervals ”stripped off”

until the function converges to the optimal value of foptimal.

The minima and maxima zmin1, zmax1, zmin2,zmax2 define two intervals in the probability

function and thereby reduce the iteration process. The pmt-filter function has therefore

a second implicit level. The definition of the minima and maxima are:

zmin1 = wmin

zmax1 = 0.25 · wmin + 0.75 · wmax

zmin2 = 0.75 · wmin + 0.25 · wmax

zmax2 = wmax

(A.17)

The pmt-filter function is now used to define the boundaries of the intervals. After

some testing, it was found that if fstrip(1) = fstrip(2), the coefficients a1 = 0.875 and

b1 = 0.125 have proved to be a good estimate.

for fstrip(1) = fstrip(2)


z∗min1

= a1 · zmin1 + b1 · zmax1

z∗max2
= a1 · zmax2 + b1 · zmin2

(A.18)

and
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for fstrip(1) > fstrip(2)


z∗max2

= a2 · zmax2 + b2 · zmax1

z∗max1
= a2 · zmin1 + b2 · zmax2

z∗min2
= a2 · zmin1 + b2 · zmax1

(A.19)

and

for fstrip(1) < fstrip(2)


z∗max1

= a2 · zmin2 + b2 · zmin2

z∗min2
= a2 · zmin1 + b2 · zmax2

z∗max1
= a2 · zmin2 + b2 · zmax1

(A.20)

For the second and third set of boundaries, tests have shown that a good approximation

for these coefficients is to use a2 = 0.75 and b2 = 0.25.

Then the maximum probability pmax is updated by updating the intervals/bins of the

probability distribution with the new zmin and zmax

pmax = peps(n) (A.21)

The interval/bins n for which pmax is computed are

n = (ny ·
zmean − wmin

wmax − wmin

+ 1) (A.22)

where n = 1, 2, ...ny and

zmean =
1

2
· (zmin1 + zmax2) (A.23)

The optimal forecast with the highest probability is then

for csum(n) = 0

 fcmax = fcmean

peps(n) = 100
(A.24)

or

for csum(n) 6= 0

 fcmax = fcsum(n)
sum(n)

Peps(n) = 0
(A.25)
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where Peps(n) is the integrated probability that is zero when the sum of the coefficients

csum(n) has a value different from zero.

csum(n) =
n∑
1

cwp (A.26)

The computation of the distribution of the remaining probabilities is split into an upper

and a lower part. The upper part is defined as

pmax < nyu ≤ 100 (A.27)

and the lower part is defined as

0 < nyl ≤ pmax (A.28)

The probability distribution computation for both upper and lower part is done by

initialising

sumw =
1

2
· peps(n) (A.29)

and summing it up over ny

sumw =


100Pn−1

i=1 peps(i)
for 1 < ny ≤ n− 1

100Pny
i=n+1 peps(i)

for n + 1 < ny ≤ 100
(A.30)

In this case the index n from Equ. A.22 is again used to reduce the boundaries according

to the intervals for which pmax was computed.

The integrated probability

Peps(i) =

ny∑
0

peps(i) (A.31)

is now, as mentioned above, split up into an upper and lower part and is 100% when

it reaches its maximum and minimum. Therefore the integration of peps is done from

half-levels (middle points).
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p∗eps(i, 2) = peps(i, 2) +
1

2
· peps(i, 1) · sumw,

 ı = n− 1, n− 2, ..., 1

ı = n + 1, n + 2, ...ny

(A.32)

and

peps(i, 2) =

 p∗eps(i, 2) for p∗eps(i, 2) < 100

100 otherwise
(A.33)

The last step is the decoupling in time of the weight function from the time window 2k

to the actual time step according to Equation A.4. The optimal and weighted optimal

forecast are calculated according to Equation A.5 and Equation A.6 by using

fcoptimal = min(|(feps(i) − fcmax(i)|) for 1 ≤ i ≤ neps (A.34)

The other parameters wmin, wmax, fcmax, fcmin fcmean, pmax are then recalculated

according to Equation A.7 to Equation A.11.

If the algorithm is run for a single site, the output contains a series of tables of proba-

bilities for each bin with maximum and minimum percentages. The tables are created

for each hour of the forecast length of 42h. The values for the optimal forecast, the

minimum and maximum, the mean and the weighted mean are also printed.

If the pmt-filter algorithm should be applied for paramter fields, the iteration needs to

be conducted in space rather than in the time level or in both. This means that the

algorithm has to be applied in a 2-dimensional or 3-dimensional way. When dealing

with fields the uncertainty of the forecast needs to be extended into the horizontal

space, i.e. if one member is best at one grid point, it ”needs” to be best at the next

one as well. The principle is however the same.

148



Appendix B

Statistical Parameters used in the

Verification

The verification took place with the following standard statistical parameters:

• mean:

mean =
1

n

∑
(fc) (B.1)

• mean absolut error (mae):

mae =
1

n

∑
|fc− obs| (B.2)

• bias:

bias =
1

n

∑
(fc− obs) (B.3)

• Variance:

var = (
1

n

∑
(fc−mean)2 (B.4)

• Standard Deviation:

stdev =

√
(
1

n

∑
(fc− obs)2) − bias2 (B.5)

• Root Mean Square error:

rms =
√

(
∑

(bias2) (B.6)
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• skill score:

The skill scores are a direct verification of a forecast against a reference forecast and a

perfect forecast. The reference forecast is usually a standard forecast such as persistence

or climatology. The skill scores are computed as:

ss =
fcreference − fc

fcreference − fcperfect

(B.7)

The skill score has a maximum value of 1 or 100\% respectively for a perfect forecast

and 0 for a performance equal to the reference forecast.
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Appendix C

Observational Data Information

The table gives an overview of the Irish and Danish observational measurements. All

observations have been averaged to hourly values for the statistical tests.
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Site Wind Speed Wind Power
[unit] [unit]

Beenaghe Mast(45m) 10min SCADA system 10min
BessyBell Turbine 1h Turbine Metering 1h
Kilronan Turbine 1h Turbine Metering 1h
Lendrum Mast(45m) 10min SCADA system 10min
MilaneHill Mast(45m) 10min SCADA system 10min
Tursillagh Mast(10m/45m) 30min PowerMetering 1h
Drinagh Mast(30m) 10min - -
Ringaskiddy Mast(30m) 10min - -
Seefin Mast(30m) 10min - -
Abild Mast(32m) 10min PowerMetering 1h
Broens Mast(32m) 10min PowerMetering 10min
Draeby Mast(32m) 10min PowerMetering 1h
Fjaldene Mast(32m) 10min PowerMetering 10min
HanstholmHavn Mast(32m) 10min PowerMetering 10min
Hollandsbjaerg Mast(32m) 10min PowerMetering 10min
Klim Mast(32m) 10min PowerMetering 10min
Ryaa Mast(32m) 10min PowerMetering 10min
Rejsby Mast(32m) 10min PowerMetering 10min
Sydthy Mast(32m) 10min PowerMetering 10min
Torrild Mast(32m) 10min PowerMetering 10min
VedersoeKaer Mast(32m) 10min PowerMetering 10min
Aarhus Mast(10m) 15min - -
Blaavand Mast(10m) 15min - -
Fredrikshavn Mast(10m) 15min - -
Gedser Mast(10m) 15min - -
HvideSande Mast(10m) 15min - -
Jaegersborg Mast(10m) 15min - -
Skrydstrup Mast(10m) 15min - -
Taasinge Mast(10m) 15min - -

Table C.1: Information of the Irish and Danish observational data

152



Appendix D

Wind Farm Verification

The following tables are complementary to the verification discussion in Chapter 3.7.

The variables are in rows and the experiments in columns. The variables are named

pwrobs and wsobs for observed power and observed wind speed, respectively. The

modelled variables arews and pwr and indicate average wind speed over one hour and

average power production over one hour, respectively. Missing data was excluded in

the statistical computations. Each table contains statistical tests for one farm.
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cases 1417 1434 1411 1440 1422 1422
mean: e014 g014 n014 g050 e300 se300
pwrobs 1626.33 1658.38 1653.08 1651.49 1636.59 1636.59
pwr 1261.94 1174.24 1154.24 1183.14 800.27 966.34
wsobs 7.86 7.94 7.94 7.92 7.88 7.88
ws 7.96 7.7 7.6 7.69 6.69 7.18
var: e014 g014 n014 g050 e300 se300
pwrobs 1503.87 1512.29 1512.33 1512.82 1508.15 1508.15
pwr 1441.71 1438.16 1434.21 1440.23 1125.94 1261.34
wsobs 3.61 3.62 3.63 3.63 3.61 3.61
ws 3.97 3.87 3.94 3.88 3.25 3.46
max: e014 g014 n014 g050 e300 se300
pwrobs 4978 4978 4978 4978 4978 4978
pwr 4988.31 4976.32 4976.32 4979.33 4980.76 4972.42
wsobs 25.07 25.07 25.07 25.07 25.07 25.07
ws 23.86 20.02 20.02 20.99 21.44 18.77
MAE: e014 g014 n014 g050 e300 se300
maepwr 665.61 777.78 784.11 743.91 991.01 876
maews 1.45 1.59 1.66 1.52 1.77 1.56
BIAS: e014 g014 n014 g050 e300 se300
biaspwr -398.02 -520.36 -535.86 -503.68 -868.83 -704.93
biasws -0.01 -0.34 -0.44 -0.33 -1.27 -0.78
STDEV: e014 g014 n014 g050 e300 se300
stdpwr 925.03 1043.29 1052.37 986.96 1081.56 1060.21
stdws 2.01 2.15 2.3 2.06 2.1 2.12
RMS: e014 g014 n014 g050 e300 se300
rmspwr 1006.72 1165.53 1180.61 1107.74 1387.02 1272.86
rmsws 2.01 2.17 2.34 2.09 2.45 2.26
COR: e014 g014 n014 g050 e300 se300
corpwr 0.8 0.75 0.74 0.77 0.7 0.72
corws 0.86 0.83 0.81 0.85 0.82 0.82
SKEW: e014 g014 n014 g050 e300 se300
pwrobs 0.683 0.64 0.65 0.65 0.6689 0.6689
pwr 1.0669 1.15 1.18 1.13 1.627 1.4339
wsobs 1.0502 1.01 1.02 1.01 1.03 1.0332
ws 0.6967 0.62 0.57 0.61 0.71 0.6601
KURT: e014 g014 n014 g050 e300 se300
pwrobs -0.7749 -0.83 -0.82 -0.83 -0.8 -0.805
pwr 0.0366 0.1929 0.25 0.09 2.06 1.2346
wsobs 1.6922 1.5424 1.57 1.53 1.63 1.6351
ws 0.4032 -0.17 -0.14 -0.18 0.25 0.0181
P25: e014 g014 n014 g050 e300 se300
pwrobs 264 280 273.75 269.5 264.5 264.5
pwr 19.56 15.83 11.94 17.02 0 9.0225
wsobs 5.26 5.31 5.29 5.275 5.2625 5.2625
ws 4.7775 4.72 4.635 4.705 4.16 4.52
P50: e014 g014 n014 g050 e300 se300
pwrobs 1171 1215 1200.5 1196 1178 1178
pwr 755.56 492.65 461.7 503.61 211.28 345.975
wsobs 7.27 7.35 7.33 7.33 7.295 7.295
ws 7.56 6.93 6.885 6.935 6.085 6.56
P75: e014 g014 n014 g050 e300 se300
pwrobs 2736 2796 2790.75 2789.5 2752.5 2752.5
pwr 2113.22 1945.48 1898.23 1991.87 1301.9 1572.885
wsobs 9.74 9.91 9.91 9.905 9.8375 9.8375
ws 10.5475 10.27 10.19 10.32 8.9125 9.49

Table D.1: Statistics for Kilronan
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cases 1403 1420 1398 1426 1409 1409
MEAN: e014 g014 n014 g050 e300 se300
pwrobs 1801.073 1849.40 1845.886 1841.14 13.265 1813.26
pwr 1531.582 1539.05 1530.373 1373.82 990.508 1169.86
wsobs 7.921 8.0333 8.0333 8.0045 7.9421 7.94
wd 8.640 8.6829 8.6654 8.2468 7.3007 7.78
VARIAB: e014 g014 n014 g050 e300 se300
pwrobs 1611.452 1633.88 1631.366 1634.89 1617.981 1617.981
pwr 1631.241 1641.69 1639.471 1569.07 1261.193 1378.074
wsobs 3.818 3.839 3.837 3.855 3.821 3.821
wd 4.428 4.342 4.335 4.182 3.405 3.611
MAX: e014 g014 n014 g050 e300 se300
pwrobs 4996 4996 4996 4996 4996 4996
pwr 4984.88 4979.48 4979.48 4980.8 4979.46 5000
wsobs 25.83 25.83 25.83 25.83 25.83 25.83
ws 22.76 21.04 21.04 21.48 21.03 18.82
wd 270 270 270 270 270 270
MAE: e014 g014 n014 g050 e300 se300
mae.pwr 782.680 894.370 889.4484 851.02 1027.72 917.27
mae.ws 1.996 2.1648 2.1532 1.8304 1.74 1.70
BIAS: e014 g014 n014 g050 e300 se300
biaspwr -332.67 -371.45 -374.10 -528.66 -882.56 -703.73
biasws 0.535 0.474 0.4601 0.0707 -0.7803 -0.3042
RMS: e014 g014 n014 g050 e300 se300
rmspwr 1154.18 1284.31 1278.488 1251.06 1453.433 1330.68
rmsws 2.60 2.84 2.83 2.44 2.464 2.39
COR: e014 g014 n014 g050 e300 se300
corpwr 0.76 0.71 0.71 0.74 0.70 0.72
corws 0.80 0.75 0.76 0.80 0.79 0.79
SKEW: e014 g014 n014 g050 e300 se300
pwrobs 0.5912 0.55 0.56 0.5648 0.5799 0.5799
pwr 0.8315 0.81 0.82 0.973 1.4028 1.2128
wsobs 1.0229 0.99 1.00 0.9776 1.0072 1.0072
ws 0.5546 0.48 0.49 0.6469 0.665 0.607
KURT: e014 g014 n014 g050 e300 se300
pwrobs -0.9791 -1.04 -1.03 -1.03 -1.0028 -1.0028
pwr -0.671 -0.68 -0.67 -0.35 1.1287 0.4658
wsobs 1.546 1.35 1.38 1.336 1.4973 1.4973
ws -0.1236 -0.42 -0.40 -0.09 0.087 -0.0436
P25: e014 g014 n014 g050 e300 se300
pwrobs 371.5 385 385.7 379 373.75 373.75
pwr 44.43 38.69 38.47 33.16 13.225 27.835
wsobs 5.27 5.29 5.297 5.29 5.2775 5.2775
ws 5.33 5.26 5.24 5.09 4.62 4.9625
P50: e014 g014 n014 g050 e300 se300
pwrobs 1324 1392 1383.5 1374 1342.5 1342.5
pwr 916.71 930.29 923.785 673.87 404.81 623.15
wsobs 7.24 7.32 7.315 7.31 7.26 7.26
ws 7.97 8.06 8.01 7.36 6.69 7.225
P75: e014 g014 n014 g050 e300 se300
pwrobs 3109.75 3165 3163.5 3163 3133.25 3133.25
pwr 2655.88 2678.29 2664.1 2325.06 1630.655 1918.57
wsobs 10.02 10.18 10.18 10.18 10.0525 10.0525
ws 11.52 11.57 11.56 10.93 9.605 10.1775

Table D.2: Statistics for Bessybell
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cases 888 3187 3130 3115 726 726
MEAN: e014 g014 n014 g050 e300 se300
pwrobs 5422.65 5741.62 5737.29 5725.98 5572.47 5572.47
pwr 3276.72 4344.91 4339.20 4620.09 3295.39 3661.79
wsobs 7.8141 8.2226 8.2171 8.2167 7.9826 7.9826
ws 7.1777 7.8667 7.8604 7.9529 6.7303 7.0415
wd 93.726 103.482 103.18 103.25 80.166 78.436
VARIAB: e014 g014 n014 g050 e300 se300
pwrobs 4515.04 4432.88 4432.22 4455.79 4606.81 4606.81
pwr 4299.49 4306.37 4312.83 4410.73 3893.03 4149.231
wsobs 3.381 3.452 3.448 3.489 3.484 3.484
ws 4.007 3.504 3.512 3.582 3.287 3.483
wd 64.332 83.244 83.41 84.75 71.457 71.707
MAX: e014 g014 n014 g050 e300 se300
pwrobs 13194 13196 13196 13196 13194 13194
pwr 13200 13200 13200 13200 13184.86 13165.62
wsobs 18.36 22.67 22.67 22.67 18.36 18.36
ws 19.16 20.73 20.73 19.37 18.32 18.09
wd 259 270 270 270 266.31 266.22
MAE: e014 g014 n014 g050 e300 se300
mae.pwr 3032.11 2141.07 2158.65 2208.79 2549.41 2348.235
mae.ws 2.1065 1.5087 1.505 1.6826 1.7118 1.5866
BIAS: e014 g014 n014 g050 e300 se300
bias.pwr -2214.69 -1365.32 -1396.56 -1128.86 -2263.54 -1898.982
bias.ws -0.8183 -0.3567 -0.3585 -0.281 -1.25 -0.9492
RMS: e014 g014 n014 g050 e300 se300
rms.pwr 4289.47 3007.49 3046.31 3107.42 3496.10 3243.085
rms.ws 2.54 1.9481 1.94 2.128 2.1403 2.0024
COR: e014 g014 n014 g050 e300 se300
cor(p): 0.6509 0.8125 0.808 0.787 0.8162 0.8249
cor(w): 0.8018 0.849 0.849 0.8228 0.8712 0.8726
SKEW: e014 g014 n014 g050 e300 se300
pwrobs 0.3087 0.3061 0.3056 0.3116 0.3009 0.3009
pwr 0.9963 0.6323 0.6347 0.5 0.931 0.8035
wsobs 0.4374 0.8254 0.8259 0.8146 0.4666 0.4666
ws 0.4321 0.5601 0.5575 0.4155 0.5609 0.5389
KURT: e014 g014 n014 g050 e300 se300
pwrobs -1.338 -1.317 -1.32 -1.320 -1.370 -1.3703
pwr -0.5096 -1.0049 -1.00 -1.20 -0.40 -0.7414
wsobs -0.2449 0.7685 0.77 0.71 -0.33 -0.3334
ws -0.49 0.0106 0.00 -0.33 -0.25 -0.3788
P25: e014 g014 n014 g050 e300 se300
pwrobs 911.5 1669 1665 1627 1068 1068
pwr 0 311.77 306.98 331.21 0 0
wsobs 5.095 5.73 5.73 5.7 5.31 5.31
ws 3.7975 5.14 5.14 5.09 3.9675 4.0725
P50: e014 g014 n014 g050 e300 se300
pwrobs 4756 4916 4916.5 4883 4913 4913
pwr 531.6 2859.17 2828.85 3287.59 1227.12 1589.405
wsobs 7.56 7.6 7.6 7.59 7.62 7.62
ws 6.745 7.48 7.47 7.73 6.14 6.505
P75: e014 g014 n014 g050 e300 se300
hline pwrobs 9590 9820 9817 9847 10025 10025
pwr 6770.42 8040.07 8040.20 8515.13 6334.74 7061.8325
wsobs 10.165 10.35 10.34 10.37 10.51 10.51
ws 10.175 10.1975 10.2 10.51 9.2 9.6

Table D.3: Statistics for Lendrum
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cases 937 1386 1371 1392 943 943
MEAN: e014 g014 n014 g050 e300 se300
pwrobs 2048.262 2433.27 2432.25 2423.30 2075.68 2075.683
pwr 1879.496 2470.00 2468.64 1964.22 1212.71 1424.456
wsobs 8.0451 8.4199 8.4066 8.4032 8.0928 8.0928
ws 8.0756 9.1127 9.1048 7.9749 6.4313 6.9141
wd 102.509 88.462 88.251 97.979 112.917 114.926
VARIAB: e014 g014 n014 g050 e300 se300
pwrobs 2066.578 2179.36 2178.15 2179.21 2084.46 2084.468
pwr 2085.303 2284.06 2283.53 2076.21 1794.89 1909.957
wsobs 5.069 4.936 4.923 4.93 5.083 5.083
ws 4.479 5.343 5.329 4.05 3.482 3.753
wd 105.853 95.369 95.656 95.871 96.843 97.623
MAX: e014 g014 n014 g050 e300 se300
pwrobs 5938 5939 5939 5939 5938 5938
pwr 5940 5940 5940 5940 5940 5940
wsobs 28.98 28.98 28.98 28.98 28.98 28.98
ws 24.63 27.56 27.56 23.6 21.67 20.81
wd 270 269.22 269.22 270 270 270
MAE: e014 g014 n014 g050 e300 se300
mae.pwr 969.0259 1534.66 1533.39 1079.95 1251.67 1168.915
mae.ws 1.7917 3.374 3.3798 1.9003 2.2668 2.1088
BIAS: e014 g014 n014 g050 e300 se300
bias.pwr -124.474 82.9031 82.226 -407.92 -787.09 -580.2241
bias.ws 0.1715 0.8447 0.8497 -0.3173 -1.5356 -1.0427
RMS: e014 g014 n014 g050 e300 se300
rms.pwr 1602.653 2196.45 2193.35 1635.12 1879.51 1803.145
rms.ws 2.5686 4.5058 4.5066 2.6253 3.2482 3.0209
CORREL: e014 g014 n014 g050 e300 se300
cor(p): 0.711 0.5234 0.5241 0.7278 0.6317 0.6482
cor(w): 0.8639 0.6411 0.6388 0.8489 0.8358 0.8326
SKEW: e014 g014 n014 g050 e300 se300
pwrobs 0.7802 0.4588 0.4597 0.4659 0.7602 0.7602
pwr 0.9093 0.3432 0.3437 0.7512 1.5231 1.312
wsobs 1.5943 1.2231 1.217 1.2294 1.5589 1.5589
ws 1.3279 0.9026 0.8993 0.9493 1.266 1.1857
KURT: e014 g014 n014 g050 e300 se300
pwrobs -0.8665 -1.3139 -1.3109 -1.308 -0.9121 -0.9121
pwr -0.7003 -1.5021 -1.5032 -0.947 0.9444 0.3092
wsobs 2.8431 1.8157 1.7965 1.8318 2.7034 2.7034
ws 1.6168 0.57 0.5697 0.8032 1.4242 1.1526
P25: e014 g014 n014 g050 e300 se300
pwrobs 281 362 359 358.5 281 281
pwr 162.08 159.555 160.43 158.13 0 0
wsobs 4.92 5.13 5.1175 5.125 4.935 4.935
ws 5.165 5.21 5.21 5.14 3.95 4.26
P50: e014 g014 n014 g050 e300 se300
pwrobs 1273 1814 1817.5 1799 1285 1285
pwr 882.77 1772.22 1768.65 1010.21 252.96 473.37
wsobs 6.67 7.28 7.275 7.26 6.7 6.7
ws 6.8 8.1 8.1 7 5.47 5.97
P75: e014 g014 n014 g050 e300 se300
pwrobs 3486 4666 4653.25 4638 3611.5 3611.5
pwr 3353.865 4798.52 4795.96 3643.71 1487.84 2042.93
wsobs 9.92 10.82 10.7875 10.795 10.02 10.02
ws 9.81 11.995 11.99 10.2 7.74 8.355

Table D.4: Statistics for Milane Hill
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cases 1584 2587 2560 2515 1422 1422
MEAN: e014 g014 n014 g050 e300 se300
pwrobs 5305.36 5462.79 5434.81 5505.62 5423.29 5423.298
pwr 5599.31 6732.83 6637.23 5526.37 3200.31 3797.667
wsobs 7.6975 7.6907 7.6749 7.7111 7.8743 7.8743
ws 8.9778 9.2888 9.2665 8.2316 6.4284 6.9343
dir.obs 217.633 208.359 208.20 208.71 217.83 217.836
wd 92.688 97.442 96.764 113.96 96.304 98.377
VARIAB: e014 g014 n014 g050 e300 se300
pwrobs 4761.02 4962.52 4951.56 4988.96 4827.59 4827.595
pwr 5653.59 5813.73 5823.95 5369.93 4447.11 4844.119
wsobs 4.419 4.355 4.34 4.394 4.468 4.468
ws 4.449 4.975 4.976 3.911 3.288 3.576
dir.obs 9.175 14.205 14.198 14.243 9.452 9.452
wd 86.316 92.133 92.11 85.236 91.231 91.623
MAX: e014 g014 n014 g050 e300 se300
pwrobs 14759 14780 14780 14780 14759 14759
pwr 15180 15180 15180 15180 15180 15180
wsobs 25.6 25.6 25.6 25.6 25.6 25.6
ws 24.31 27.58 27.58 22.64 20.99 20.28
dir.obs 248 248 248 248 248 248
wd 270 270 270 270 270 270
MAE: e014 g014 n014 g050 e300 se300
mae.pwr 2620.39 4243.46 4234.10 2106.95 3018.03 2816.106
mae.ws 2.1421 3.9604 3.9577 2.0076 2.3768 2.2448
BIAS: e014 g014 n014 g050 e300 se300
bias.pwr 293.950 1270.03 1202.42 20.753 -2222.98 -1625.631
bias.ws 1.1163 1.5943 1.5776 0.5205 -1.4459 -0.9372
RMS: e014 g014 n014 g050 e300 se300
rms.pwr 3893.56 5701.37 5690.85 3123.60 4384.21 4137.582
rms.ws 2.8405 5.0054 5.0064 2.5713 3.2098 3.0032
CORREL: e014 g014 n014 g050 e300 se300
cor(p): 0.7346 0.477 0.4765 0.8205 0.6706 0.6903
cor(w): 0.8285 0.4901 0.4889 0.8222 0.7677 0.77
SKEW: e014 g014 n014 g050 e300 se300
pwrobs 0.5591 0.5148 0.5286 0.4966 0.5366 0.5366
pwr 0.5345 0.2094 0.2344 0.5357 1.3519 1.1328
wsobs 1.0252 0.8294 0.8334 0.8208 1.0559 1.0559
ws 0.7966 0.6748 0.6802 0.6748 1.0268 0.9658
KURT: e014 g014 n014 g050 e300 se300
pwrobs -1.0459 -1.1653 -1.1461 -1.1897 -1.1076 -1.1076
pwr -1.3033 -1.5685 -1.5626 -1.2305 0.5363 -0.1288
wsobs 1.2973 0.7335 0.7527 0.6798 1.2394 1.2394
ws 0.2475 0.2593 0.2621 0.0477 0.7651 0.5477
P25: e014 g014 n014 g050 e300 se300
pwrobs 864.75 764 769.5 745 963.25 963.25
pwr 173.337 719 606.012 411.66 0 0
wsobs 4.8 4.6 4.6 4.5 4.8 4.8
ws 5.63 5.58 5.5675 5.16 3.87 4.21
P50: e014 g014 n014 g050 e300 se300
pwrobs 4058.5 4087 4062.5 4155 4132.5 4132.5
pwr 3310.97 5928.99 5500.65 3413.94 801.5 1280.385
wsobs 6.9 7 7.05 7.1 7 7
ws 8.12 8.7 8.66 7.51 5.615 6.03
P75: e014 g014 n014 g050 e300 se300
pwrobs 9022.75 9779 9719.25 9922 9549.75 9549.75
pwr 10986.16 12742.64 12666.61 9969.2 5165.54 6346.7575
wsobs 9.9 10.2 10.2 10.2 10.1 10.1
ws 11.6475 12.275 12.26 10.62 8.345 8.84

Table D.5: Statistics for Tursillagh
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Appendix E

Statistics of Multi-Scheme

Experiment

The performance of the ensemble system has been evaluated by computing skill scores.

The following tables are complementary to the statistics shown in Chapter 5, where

only area and country averages were presented. These tables show the results of the

individual 27 stations. Note, in the following tables, the first column (”ana”) refers to

the analysis, which takes the value 100% in the skill scores.
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site ana winfc mean wmean bg
eltra 0.16 26.81 13.71 19.83 9.60
multi 0.16 25.50 16.28 21.59 8.73
Abild 0.23 26.23 38.62 34.66 25.51
Broens 0.24 28.20 33.48 26.48 27.50
Draeby 0.25 44.28 26.03 33.65 5.85
Fjaldene 0.29 55.65 51.10 56.76 37.02
HanstholmHavn 0.37 -57.64 46.21 29.85 98.03
Hollandsbjaerg 0.26 41.17 28.34 34.18 28.66
Klim 0.27 30.79 26.70 28.77 7.59
Rejsby 0.36 50.47 45.23 43.66 46.62
Ryaa 0.25 55.61 27.10 33.25 -1.67
Sydthy 0.25 46.25 28.81 37.43 20.30
Torrild 0.48 33.79 8.14 14.37 -0.55
VedersoeKaer 0.28 34.44 43.01 40.50 13.26
dk 0.22 33.39 31.76 24.33 21.49
Aarhus 0.39 110.70 84.93 66.98 47.72
Fredrikshavn 0.31 49.35 19.48 28.16 5.63
Gedser 0.38 61.78 48.37 37.91 36.08
HvideSande 0.27 107.17 89.61 76.81 51.93
Jaegersborg 0.28 22.90 18.39 23.26 10.96
Skrydstrup 0.29 23.39 20.31 27.13 12.01
Taasinge 0.45 104.44 62.30 34.00 65.33
irl 0.24 39.88 28.54 20.55 20.91
Bessybel 0.35 81.76 22.15 21.37 7.42
Kilronan 0.30 2.55 -10.27 3.94 -6.98
Lendrum 0.26 9.30 -16.89 2.63 -55.46
Milane 0.34 80.47 50.32 42.33 38.92
Tursilla 0.34 50.12 44.76 36.07 27.66
ucc 0.21 39.72 30.06 26.20 3.27
Drinagh 0.20 54.88 50.36 44.15 42.47
Ringaski 0.26 49.29 40.18 25.97 25.82
Seefin 0.60 30.26 17.77 17.35 12.78
denmark 0.19 28.27 21.72 22.55 13.21
ireland 0.23 39.76 29.62 24.55 8.42

Table E.1: Results of the skill score with 50 ensemble members. The abbreviations
are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period, ’mean’ is the
ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess, ’ctrl’ is the control
forecast for the high resolution deterministic forecast ’dfc’
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site ana winfc mean wmean bg wbg
eltra 0.16 13.67 14.12 20.91 11.12 12.10
multi 0.16 24.86 16.23 20.85 11.16 15.19
Abild 0.23 24.64 35.72 33.60 -18.08 32.11
Broens 0.24 28.36 40.55 25.67 -20.54 37.02
Draeby 0.25 43.22 12.61 34.27 -13.32 9.99
Fjaldene 0.29 54.52 51.19 55.68 41.90 49.67
HanstholmHavn 0.37 -43.96 53.29 33.21 81.97 60.83
Hollandsbjaerg 0.26 42.03 30.29 34.44 19.73 30.77
Klim 0.27 27.25 26.12 25.99 19.77 25.22
Rejsby 0.36 64.58 53.24 42.28 -1.90 53.29
Ryaa 0.25 56.64 16.64 34.82 -5.50 13.00
Sydthy 0.25 44.97 30.30 36.57 21.51 28.97
Torrild 0.49 32.66 13.48 13.50 11.90 14.75
VedersoeKaer 0.28 34.50 18.81 39.84 -5.51 16.32
dk 0.22 33.25 20.69 24.74 4.51 18.77
Aarhus 0.39 110.70 28.00 66.98 -29.86 15.91
Fredrikshavn 0.31 49.35 14.72 28.16 -6.47 16.62
Gedser 0.38 61.78 11.04 37.91 -12.56 7.96
HvideSande 0.27 109.25 35.47 78.41 -9.74 28.41
Jaegersborg 0.28 23.48 19.82 23.62 8.06 11.08
Skrydstrup 0.29 23.34 16.23 27.08 -2.19 13.04
Taasinge 0.45 104.20 67.80 33.97 62.12 68.83
irl 0.24 34.79 34.63 20.13 8.72 29.57
Bessybel 0.35 88.36 36.41 20.40 63.41 32.39
Kilronan 0.30 2.55 -36.81 3.94 -29.01 -54.97
Lendrum 0.26 10.47 -130.72 -29.89 -242.56 -158.54
Milane 0.34 80.47 30.52 42.33 5.08 26.65
Tursilla 0.33 50.02 42.82 35.95 9.06 39.51
ucc 0.21 37.12 24.78 26.55 5.18 22.23
Drinagh 0.20 54.88 40.67 44.15 21.01 40.00
Ringaski 0.26 49.29 36.46 25.97 3.27 35.95
Seefin 0.59 28.69 9.80 17.14 -7.48 8.42
denmark 0.19 27.81 17.80 22.22 8.82 16.45
ireland 0.23 36.46 27.59 24.71 6.20 24.33

Table E.2: Results of skill score with 100 ensemble members. The abbreviations are as
follows: ’ana’ is the analysis, ’winfc’ is the winner of the period, ’mean’ is the ensemble
mean,’wmean’ is the weighted mean, ’bg’ is the best guess, ’ctrl’ is the control forecast
for the high resolution deterministic forecast ’dfc’
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site ana winfc mean wmean bg
eltra 0.42 38.39 6.81 19.96 1.09
multi 0.43 37.96 8.11 20.36 0.81
Abild 0.55 35.64 0.33 19.30 2.67
Broens 0.56 44.54 30.47 50.76 2.21
Draeby 0.69 46.84 20.24 32.74 1.30
Fjaldene 0.72 56.46 51.06 52.61 40.38
HanstholmHavn 0.94 -41.47 17.12 0.35 50.43
Hollandsbjaerg 0.69 30.76 -6.46 15.37 -0.80
Klim 0.72 40.79 32.61 33.33 18.19
Rejsby 0.96 154.71 150.35 120.32 129.96
Ryaa 0.67 42.64 -1.03 18.59 -8.54
Sydthy 0.64 5.38 -2.71 16.92 -35.53
Torrild 0.90 23.50 8.56 18.00 1.39
VedersoeKaer 0.82 75.14 60.70 50.36 45.71
dk 1.21 77.60 50.17 36.40 56.02
Aarhus 2.90 395.01 252.15 186.39 266.89
Fredrikshavn 1.04 43.79 10.70 28.04 12.93
Gedser 1.84 -199.54 -105.34 -33.13 -97.10
HvideSande 1.30 183.23 150.20 112.08 128.64
Jaegersborg 1.38 50.66 30.78 32.85 45.57
Skrydstrup 2.25 43.09 27.31 37.41 18.68
Taasinge 1.37 59.98 19.45 17.81 26.94
irl 0.66 60.88 24.33 18.58 5.91
Bessybel 0.56 52.11 32.96 18.44 -7.53
Kilronan 0.51 46.24 41.58 17.30 17.93
Lendrum 0.42 100.86 104.09 103.48 109.12
Milane 0.54 68.09 64.86 65.89 42.18
Tursilla 0.51 51.36 49.00 40.84 37.39
ucc 0.58 38.68 20.30 22.35 6.54
Drinagh 0.57 54.39 23.26 26.42 20.18
Ringaski 0.71 72.42 17.78 9.52 -14.50
Seefin 1.52 24.49 16.53 15.62 9.93
denmark 0.59 48.66 19.46 24.69 15.71
ireland 0.62 46.22 21.67 21.07 6.32
multi 0.43 37.96 8.11 20.36 0.81
dk 1.21 77.60 50.17 36.40 56.02
irl 0.66 60.88 24.33 18.58 5.91
ucc 0.58 38.68 20.30 22.35 6.54

Table E.3: Summary of skill scores with 50 ensemble members for wind power. The
abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,
’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess
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site ana winfc mean wmean bg wbg
eltra 0.42 -9.51 3.79 19.18 0.00 -4.49
multi 0.43 37.33 4.92 19.57 -9.81 -7.57
Abild 0.56 34.77 2.50 18.26 -0.96 -21.99
Broens 0.56 43.23 39.65 49.28 -4.23 -4.55
Draeby 0.69 46.12 -2.71 33.26 -19.53 -18.29
Fjaldene 0.72 54.33 55.48 50.39 21.96 45.00
HanstholmHavn 0.94 -42.31 14.05 1.04 25.03 41.68
Hollandsbjaerg 0.69 30.47 -1.89 15.73 -8.49 -23.15
Klim 0.71 36.51 30.37 29.59 32.23 13.56
Rejsby 0.96 146.02 178.41 124.11 105.28 139.37
Ryaa 0.67 43.21 -12.28 19.83 -6.72 -45.76
Sydthy 0.64 6.89 -1.08 16.78 -18.71 -26.98
Torrild 0.90 24.07 7.05 18.09 8.18 -8.49
VedersoeKaer 0.83 75.35 47.60 50.17 21.00 25.07
dk 1.20 77.73 31.56 36.70 22.56 30.35
Aarhus 2.90 395.01 138.78 186.39 1.81 123.36
Fredrikshavn 1.04 43.79 -1.10 28.04 -5.91 -6.77
Gedser 1.84 -199.54 -6.26 -33.13 72.82 36.03
HvideSande 1.30 182.90 67.99 111.83 22.96 57.85
Jaegersborg 1.37 50.69 36.64 32.87 56.38 41.19
Skrydstrup 2.25 43.11 8.39 37.44 -11.99 1.31
Taasinge 1.37 60.82 32.41 17.82 28.84 35.92
irl 0.66 56.69 36.02 17.47 12.50 17.12
Bessybel 0.56 47.98 56.92 15.12 36.08 8.45
Kilronan 0.51 46.24 -6.23 17.30 -130.41 -169.69
Lendrum 0.42 98.87 105.05 102.22 113.65 110.67
Milane 0.54 68.09 46.59 65.89 6.88 -2.23
Tursilla 0.50 51.59 53.06 40.92 2.25 25.71
ucc 0.58 35.67 12.37 22.57 -10.32 2.80
Drinagh 0.57 54.39 15.35 26.42 -2.17 -14.76
Ringaski 0.71 72.42 17.18 9.52 -54.28 2.32
Seefin 1.51 24.72 11.86 16.04 -11.13 -7.30
denmark 0.59 48.23 12.11 24.19 -1.07 2.66
ireland 0.62 42.68 20.26 20.87 -2.71 7.57

Table E.4: Summary of the skill score with 100 ensemble members for wind power. The
abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,
’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess
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site ana winfc mean wmean bg
eltra 1.26 1.55 1.67 1.62 1.68
multi 1.29 1.62 1.75 1.70 1.78
Abild 2.12 2.38 2.65 2.58 2.65
Broens 1.98 2.24 2.27 2.26 2.27
Draeby 2.02 2.35 2.49 2.42 2.54
Fjaldene 2.28 2.45 2.48 2.45 2.52
HanstholmHavn 3.41 3.02 3.09 3.09 3.13
Hollandsbjaerg 2.33 2.80 3.05 2.97 3.05
Klim 2.20 2.37 2.41 2.39 2.49
Rejsby 3.49 3.33 3.40 3.46 3.41
Ryaa 2.10 2.66 2.78 2.70 2.87
Sydthy 2.20 2.76 2.88 2.80 2.94
Torrild 4.29 4.72 5.01 4.93 5.05
VedersoeKaer 3.71 3.73 3.40 3.47 3.44
dk 1.17 1.35 1.35 1.38 1.37
Aarhus 2.09 2.03 2.05 2.06 2.09
Fredrikshavn 1.95 2.31 2.41 2.37 2.43
Gedser 2.63 2.45 2.46 2.47 2.49
HvideSande 1.90 1.88 1.82 1.82 1.88
Jaegersborg 1.49 2.13 2.06 2.07 2.04
Skrydstrup 1.37 1.64 1.67 1.67 1.69
Taasinge 2.97 3.20 3.29 3.35 3.26
irl 1.88 2.06 2.20 2.19 2.25
Bessybel 3.06 3.10 3.44 3.41 3.50
Kilronan 2.71 3.12 3.06 3.00 3.08
Lendrum 2.07 2.20 2.33 2.27 2.38
Milane 3.40 3.73 3.99 3.97 4.03
Tursilla 2.75 3.16 3.29 3.31 3.41
ucc 1.84 2.32 2.58 2.55 2.74
Drinagh 2.30 3.09 3.29 3.23 3.39
Ringaski 2.65 3.00 3.29 3.26 3.33
Seefin 4.87 4.96 5.04 5.06 5.07
denmark 1.23 1.48 1.55 1.54 1.58
ireland 1.86 2.19 2.39 2.37 2.49

Table E.5: Summary of standard deviation with 50 ensemble members for wind speed.
The abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the
period, ’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best
guess
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site ana winfc mean wmean bg wbg
eltra 1.25 1.66 1.66 1.61 0.00 1.67
multi 1.30 1.63 1.75 1.71 1.76 1.75
Abild 2.13 2.40 2.66 2.59 2.76 2.68
Broens 1.99 2.25 2.25 2.27 2.42 2.26
Draeby 2.01 2.35 2.52 2.42 2.57 2.54
Fjaldene 2.29 2.46 2.48 2.46 2.50 2.49
HanstholmHavn 3.43 3.03 3.11 3.11 3.13 3.11
Hollandsbjaerg 2.33 2.80 3.05 2.97 3.07 3.06
Klim 2.18 2.38 2.41 2.40 2.43 2.41
Rejsby 3.48 3.23 3.36 3.45 3.58 3.36
Ryaa 2.10 2.66 2.80 2.70 2.86 2.82
Sydthy 2.19 2.76 2.87 2.81 2.89 2.88
Torrild 4.31 4.74 5.00 4.95 5.01 5.01
VedersoeKaer 3.73 3.74 3.47 3.48 3.51 3.47
dk 1.18 1.35 1.38 1.38 1.41 1.38
Aarhus 2.09 2.03 2.11 2.06 2.17 2.12
Fredrikshavn 1.95 2.31 2.43 2.37 2.50 2.42
Gedser 2.63 2.45 2.54 2.47 2.60 2.55
HvideSande 1.89 1.87 1.89 1.82 1.95 1.90
Jaegersborg 1.50 2.13 2.06 2.07 2.04 2.10
Skrydstrup 1.37 1.64 1.68 1.67 1.72 1.69
Taasinge 2.97 3.19 3.27 3.34 3.29 3.27
irl 1.88 2.07 2.19 2.18 2.24 2.21
Bessybel 3.06 3.14 3.40 3.42 3.34 3.43
Kilronan 2.71 3.12 3.11 3.00 3.12 3.15
Lendrum 2.08 2.15 2.34 2.24 2.43 2.37
Milane 3.40 3.73 4.03 3.97 4.12 4.05
Tursilla 2.75 3.16 3.31 3.31 3.53 3.34
ucc 1.83 2.31 2.58 2.52 2.68 2.61
Drinagh 2.30 3.09 3.35 3.23 3.53 3.37
Ringaski 2.65 3.00 3.31 3.26 3.42 3.33
Seefin 4.84 4.95 5.05 5.04 5.13 5.05
denmark 1.24 1.49 1.56 1.54 1.59 1.57
ireland 1.85 2.19 2.38 2.35 2.46 2.41

Table E.6: Summary of standard deviation with 100 ensemble members for wind speed.
The abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,
’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess, ’wbg’
is the weighted best guess
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site ana winfc mean wmean bg
eltra 1.05 1.32 1.53 1.43 1.55
multi 1.07 1.37 1.59 1.48 1.61
Abild 1.56 1.80 2.10 1.95 2.06
Broens 1.63 1.75 1.84 1.75 1.88
Draeby 1.73 1.96 2.13 2.03 2.17
Fjaldene 1.83 1.96 1.99 1.96 2.01
HanstholmHavn 2.92 2.53 2.60 2.61 2.66
Hollandsbjaerg 1.82 2.22 2.45 2.29 2.41
Klim 1.90 2.05 2.09 2.07 2.15
Rejsby 3.01 2.70 2.76 2.86 2.80
Ryaa 1.78 2.19 2.38 2.24 2.38
Sydthy 1.97 2.37 2.55 2.42 2.64
Torrild 2.12 2.53 2.70 2.59 2.72
VedersoeKaer 3.36 3.02 3.18 3.32 3.23
dk 0.75 0.80 0.85 0.88 0.83
Aarhus 1.61 1.44 1.50 1.52 1.51
Fredrikshavn 1.47 1.77 1.90 1.83 1.86
Gedser 2.31 1.95 2.01 2.05 2.03
HvideSande 1.66 1.56 1.55 1.58 1.60
Jaegersborg 0.40 0.70 0.80 0.79 0.72
Skrydstrup 0.89 0.97 1.00 0.98 1.02
Taasinge 1.13 1.29 1.44 1.46 1.40
irl 1.70 1.84 2.08 2.05 2.14
Bessybel 1215.67 1308.85 1315.70 1300.67 1352.07
Kilronan 1094.92 1198.77 1195.72 1157.01 1203.24
Lendrum 2863.23 2873.65 3234.31 3072.44 3379.94
Milane 2045.98 2219.15 2248.78 2213.10 2311.28
Tursilla 4089.59 5005.18 4914.70 4838.14 5014.18
ucc 1.68 2.12 2.37 2.31 2.45
Drinagh 1.90 2.38 2.73 2.64 2.74
Ringaski 2.11 2.31 2.54 2.50 2.61
Seefin 3.86 4.01 3.99 4.02 4.02
denmark 0.91 1.08 1.22 1.18 1.22
ireland 1.69 1.98 2.22 2.18 2.30

Table E.7: Summary of standard deviation with 50 ensemble members for wind power.
The abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the
period, ’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best
guess
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site ana winfc mean wmean bg wbg
eltra 1.06 1.60 1.55 1.44 0.00 1.57
multi 1.07 1.37 1.60 1.49 1.65 1.65
Abild 1.57 1.81 2.10 1.95 2.04 2.15
Broens 1.63 1.75 1.82 1.76 1.87 1.89
Draeby 1.73 1.97 2.21 2.03 2.22 2.25
Fjaldene 1.83 1.96 1.98 1.97 2.05 2.00
HanstholmHavn 2.94 2.54 2.61 2.63 2.64 2.67
Hollandsbjaerg 1.83 2.23 2.45 2.29 2.42 2.51
Klim 1.87 2.05 2.09 2.07 2.07 2.15
Rejsby 2.98 2.70 2.71 2.84 2.83 2.77
Ryaa 1.79 2.19 2.42 2.24 2.38 2.49
Sydthy 1.97 2.37 2.55 2.43 2.56 2.60
Torrild 2.13 2.53 2.72 2.60 2.68 2.77
VedersoeKaer 3.37 3.03 3.21 3.31 3.32 3.28
dk 0.76 0.80 0.89 0.88 0.90 0.88
Aarhus 1.61 1.44 1.54 1.52 1.62 1.56
Fredrikshavn 1.47 1.77 1.95 1.83 1.95 1.95
Gedser 2.31 1.95 2.07 2.05 2.16 2.12
HvideSande 1.66 1.56 1.63 1.58 1.70 1.66
Jaegersborg 0.40 0.70 0.78 0.80 0.66 0.75
Skrydstrup 0.89 0.97 1.04 0.98 1.08 1.05
Taasinge 1.14 1.28 1.41 1.46 1.39 1.37
irl 1.69 1.83 2.02 2.02 2.06 2.05
Bessybel 1212.03 1310.31 1298.12 1302.31 1323.82 1333.60
Kilronan 1094.92 1198.77 1209.63 1157.01 1242.72 1238.61
Lendrum 2839.71 2804.69 3236.67 3024.40 3488.95 3405.12
Milane 2045.98 2219.15 2244.81 2213.10 2330.93 2336.43
Tursilla 4095.50 5012.41 4902.61 4845.13 5310.45 5112.87
ucc 1.66 2.10 2.37 2.26 2.47 2.41
Drinagh 1.90 2.38 2.80 2.64 2.93 2.94
Ringaski 2.11 2.31 2.55 2.50 2.69 2.56
Seefin 3.84 3.99 3.99 4.00 4.08 4.06
denmark 0.91 1.09 1.25 1.18 1.27 1.27
ireland 1.68 1.97 2.19 2.14 2.27 2.23

Table E.8: Summary of standard deviation with 100 ensemble members for wind power.
The abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,
’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess
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site obs ana1 winfc mean wmean bg
eltra 3.74 3.49 3.61 3.71 3.68 3.70
multi 3.72 3.48 3.60 3.70 3.66 3.70
Abild 3.76 3.51 3.54 3.61 3.61 3.60
Broens 3.73 3.65 3.87 3.75 3.73 3.74
Draeby 3.67 3.46 3.58 3.60 3.59 3.59
Fjaldene 3.66 3.44 3.49 3.54 3.51 3.52
HanstholmHavn 3.80 3.67 3.92 3.87 3.84 3.82
Hollandsbjaerg 3.79 3.52 3.64 3.75 3.73 3.72
Klim 3.89 3.58 4.00 3.87 3.86 3.91
Rejsby 3.83 3.61 3.94 3.71 3.69 3.71
Ryaa 3.94 3.61 3.93 3.94 3.91 3.93
Sydthy 4.07 3.77 4.00 4.02 4.00 3.96
Torrild 3.61 3.32 3.49 3.51 3.49 3.52
VedersoeKaer 3.89 3.70 3.69 3.79 3.76 3.76
dk 2.59 2.38 2.56 2.52 2.54 2.49
Aarhus 2.41 2.19 2.34 2.32 2.35 2.26
Fredrikshavn 3.19 3.12 3.15 3.20 3.22 3.16
Gedser 3.04 2.81 3.10 2.96 2.97 2.96
HvideSande 2.81 2.65 2.67 2.70 2.71 2.65
Jaegersborg 2.28 1.97 2.20 2.18 2.20 2.14
Skrydstrup 2.41 2.09 2.44 2.28 2.31 2.25
Taasinge 2.57 2.48 2.38 2.49 2.53 2.46
irl 3.94 3.69 3.51 3.78 3.79 3.82
Bessybel 4.25 3.97 3.98 4.07 4.06 4.11
Kilronan 3.97 3.90 3.73 3.81 3.80 3.85
Lendrum 3.95 3.76 3.74 3.78 3.76 3.75
Milane 5.04 4.40 4.50 4.70 4.71 4.69
Tursilla 4.29 3.84 3.94 3.99 4.02 4.05
ucc 4.34 3.91 3.93 4.07 4.08 4.21
Drinagh 4.73 4.07 4.20 4.35 4.38 4.40
Ringaski 4.42 4.04 4.08 4.18 4.19 4.24
Seefin 4.17 3.76 3.93 3.89 3.91 3.96
denmark 3.16 2.93 3.08 3.11 3.10 3.10
ireland 4.14 3.80 3.72 3.93 3.93 4.02

Table E.9: Summary of variance with 50 ensemble members for wind speed. The
abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,
’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess, ’wbg’
is the weighted best guess
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site obs ana winfc mean wmean bg wbg
eltra 3.72 3.49 3.69 3.68 3.66 0.00 3.63
multi 3.74 3.50 3.61 3.70 3.68 3.66 3.71
Abild 3.78 3.53 3.56 3.57 3.63 3.50 3.58
Broens 3.87 3.66 3.89 3.71 3.75 3.62 3.72
Draeby 3.69 3.47 3.60 3.56 3.61 3.55 3.57
Fjaldene 3.68 3.45 3.51 3.55 3.53 3.52 3.57
HanstholmHavn 4.03 3.69 3.94 3.87 3.85 3.77 3.87
Hollandsbjaerg 3.81 3.54 3.65 3.76 3.74 3.71 3.78
Klim 3.91 3.59 4.02 3.87 3.88 3.87 3.88
Rejsby 3.84 3.61 4.02 3.65 3.70 3.58 3.66
Ryaa 3.95 3.62 3.95 3.95 3.93 3.95 3.96
Sydthy 4.10 3.78 4.02 4.01 4.02 3.96 4.01
Torrild 3.63 3.34 3.51 3.50 3.51 3.48 3.51
VedersoeKaer 3.91 3.71 3.70 3.81 3.78 3.78 3.82
dk 2.60 2.39 2.58 2.50 2.55 2.50 2.49
Aarhus 2.41 2.19 2.34 2.31 2.35 2.27 2.31
Fredrikshavn 3.19 3.12 3.15 3.17 3.22 3.20 3.16
Gedser 3.04 2.81 3.10 2.86 2.97 2.79 2.85
HvideSande 2.80 2.64 2.66 2.69 2.69 2.64 2.68
Jaegersborg 2.28 1.97 2.20 2.14 2.19 2.07 2.14
Skrydstrup 2.41 2.08 2.44 2.25 2.31 2.21 2.25
Taasinge 2.57 2.48 2.39 2.42 2.53 2.39 2.41
irl 3.93 3.70 3.52 3.65 3.79 3.71 3.66
Bessybel 4.25 3.98 3.95 3.94 4.07 3.92 3.94
Kilronan 3.97 3.90 3.73 3.69 3.80 3.73 3.70
Lendrum 3.96 3.78 3.74 3.76 3.77 3.74 3.78
Milane 5.04 4.40 4.50 4.60 4.71 4.65 4.60
Tursilla 4.29 3.84 3.93 3.85 4.01 3.90 3.83
ucc 4.34 3.92 3.94 3.98 4.08 4.06 3.98
Drinagh 4.73 4.07 4.20 4.22 4.38 4.23 4.22
Ringaski 4.42 4.04 4.08 4.10 4.19 4.13 4.10
Seefin 4.17 3.75 3.93 3.78 3.91 3.80 3.79
denmark 3.17 2.94 3.10 3.10 3.12 0.00 3.10
ireland 4.13 3.81 3.73 3.82 3.93 0.00 3.82

Table E.10: Summary of variance with 100 ensemble members for wind speed. The
abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,
’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess, ’wbg’
is the weighted best guess
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site obs ana1 winfc mean wmean bg
eltra 3.16 2.90 3.06 3.18 3.12 3.21
multi 3.16 2.89 3.04 3.17 3.11 3.21
Abild 3.25 3.01 3.03 3.19 3.13 3.20
Broens 3.35 3.15 3.27 3.30 3.24 3.33
Draeby 3.18 2.97 3.08 3.13 3.08 3.15
Fjaldene 3.07 2.90 3.08 3.07 3.02 3.05
HanstholmHavn 3.28 3.11 3.35 3.33 3.27 3.34
Hollandsbjaerg 3.15 2.96 3.12 3.17 3.13 3.17
Klim 3.31 2.90 3.31 3.31 3.27 3.36
Rejsby 3.31 3.12 3.38 3.26 3.21 3.29
Ryaa 3.32 2.97 3.31 3.34 3.31 3.34
Sydthy 3.46 3.14 3.39 3.43 3.39 3.46
Torrild 3.04 2.80 2.93 3.02 2.97 3.07
VedersoeKaer 3.31 3.19 3.42 3.30 3.24 3.30
dk 1.49 1.10 1.34 1.43 1.44 1.37
Aarhus 1.33 0.93 1.19 1.23 1.28 1.13
Fredrikshavn 2.23 1.99 2.23 2.29 2.26 2.22
Gedser 2.27 1.80 2.29 2.21 2.19 2.17
HvideSande 1.95 1.60 1.71 1.84 1.87 1.78
Jaegersborg 1.11 0.64 0.92 1.03 1.02 0.92
Skrydstrup 1.18 0.74 1.20 1.06 1.08 1.03
Taasinge 1.60 1.31 1.44 1.58 1.58 1.51
irl 3.35 3.05 3.00 3.24 3.22 3.31
Bessybel 3.66 3.59 3.61 3.53 3.56 3.60
Kilronan 3.52 3.50 3.47 3.39 3.41 3.46
Lendrum 3.95 3.93 3.88 3.76 3.84 3.80
Milane 3.74 3.70 3.58 3.49 3.55 3.57
Tursilla 3.74 3.67 3.67 3.55 3.63 3.60
ucc 3.59 3.22 3.40 3.43 3.44 3.50
Drinagh 3.63 3.28 3.49 3.49 3.48 3.52
Ringaski 3.60 3.31 3.40 3.47 3.49 3.53
Seefin 3.45 3.04 3.19 3.29 3.30 3.36
denmark 2.32 1.99 2.19 2.30 2.28 2.29
ireland 3.47 3.14 3.20 3.33 3.33 3.41

Table E.11: Summary of variance with 50 ensemble members for wind power. The
abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,
’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess
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site obs ana1 winfc mean wmean bg wbg
eltra 3.18 2.92 3.27 3.18 3.14 0.00 3.19
multi 3.17 2.90 3.06 3.17 3.13 3.18 3.26
Abild 3.27 3.03 3.05 3.16 3.15 3.11 3.27
Broens 3.37 3.17 3.29 3.26 3.26 3.22 3.37
Draeby 3.20 2.99 3.09 3.10 3.10 3.10 3.22
Fjaldene 3.09 2.91 3.09 3.06 3.03 3.10 3.17
HanstholmHavn 3.37 3.12 3.36 3.32 3.28 3.33 3.43
Hollandsbjaerg 3.16 2.98 3.14 3.17 3.14 3.17 3.27
Klim 3.32 2.91 3.32 3.30 3.29 3.30 3.42
Rejsby 3.33 3.13 3.34 3.23 3.23 3.22 3.35
Ryaa 3.33 2.98 3.32 3.33 3.32 3.32 3.44
Sydthy 3.47 3.15 3.41 3.42 3.40 3.44 3.55
Torrild 3.05 2.81 2.95 3.01 2.99 3.02 3.13
VedersoeKaer 3.33 3.21 3.42 3.28 3.25 3.32 3.40
dk 1.50 1.10 1.35 1.42 1.45 1.41 1.41
Aarhus 1.33 0.93 1.19 1.23 1.28 1.14 1.20
Fredrikshavn 2.23 1.99 2.23 2.29 2.26 2.29 2.31
Gedser 2.27 1.80 2.29 2.15 2.19 2.07 2.16
HvideSande 1.96 1.60 1.71 1.86 1.87 1.79 1.85
Jaegersborg 1.11 0.64 0.93 1.00 1.02 0.87 0.97
Skrydstrup 1.18 0.74 1.20 1.05 1.08 1.03 1.03
Taasinge 1.60 1.31 1.33 1.51 1.58 1.47 1.49
irl 3.35 3.06 3.01 3.13 3.22 3.19 3.22
Bessybel 3.66 3.59 3.61 3.41 3.56 3.53 3.55
Kilronan 3.52 3.50 3.47 3.28 3.41 3.44 3.42
Lendrum 3.95 3.94 3.88 3.68 3.84 3.79 3.84
Milane 3.74 3.70 3.58 3.39 3.55 3.55 3.66
Tursilla 3.74 3.67 3.66 3.43 3.63 3.59 3.62
ucc 3.57 3.22 3.40 3.33 3.42 3.47 3.47
Drinagh 3.63 3.28 3.49 3.40 3.48 3.53 3.60
Ringaski 3.60 3.31 3.40 3.38 3.49 3.49 3.51
Seefin 3.45 3.04 3.19 3.20 3.30 3.27 3.31
denmark 2.34 2.00 2.20 2.30 2.29 0.00 2.34
ireland 3.46 3.14 3.20 3.23 3.32 0.00 3.34

Table E.12: Summary of variance with 100 ensemble members for wind power. The
abbreviations are as follows: ’ana’ is the analysis, ’winfc’ is the winner of the period,
’mean’ is the ensemble mean,’wmean’ is the weighted mean, ’bg’ is the best guess
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Appendix F

Glossary

F.1 Symbols

Symbol Unit

g gravity m/s2

dZ Gradient of the geopotential m

E Energy Output J

F Forecast Error (unit is dependent on the paramter) -

p Pressure Pa

U Uncertainty Estimate of a Forecast -

u velocity m/s

R Universal Gas constant (287) J/kgK

T Temerature K

η general pressure based and terrain following vertical coordinate system -

φ geopotential height m2/s2

λ Longitudinal axis in the spherical coordinate system rad

ρ density kg/m3

θ Latitudinal axis in the spherical coordinate system rad

vc Phase speed of the fastest propagating perturbation m/s
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F.2 Abbreviations

Abbreviation Explanation

CFL Courant, Friedrichs, and Lewy criterion

3DVAR Three-Dimensional Variational Data Assimilation

4DVAR Four-Dimensional Variational Data Assimilation

DMI Danish Meteorological Institute

ECMWF European Center for Medium range Weather Forecasting

EPS Ensemble Prediction System

GTS Global Telecommunication System, a global onetwork for atmspheric data

GLCC, The Global Land Characteristics Data Base. U.S. Geological Survey

GTOPO30 Global 30 Arc Second Elevation data Set. U.S. Geological Survey

HIRLAM High Resolution Limited Area Model

mae mean absolut error

mslp mean sea level pressure

NOAA National Oceanic And Atmospheric Administration

NWP Numerical Weather Prediciton

OI Optimal Interpolation

pdf Probability density function

pmt probabilistic multi-trend filter

rms root mean square error

ss skill scores - verification method used for ensemble predictions

stdev Strandard Deviation

TSO Transmission System Operator

UCC University College Cork

UTC Universal Time Coordinated

var Variance
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F.3 Glossary of Meteorological Terms

Most of the following terms are from the electronic version of the American Meteoro-

logical Society’s Meteorological Glossary, which is a copy of the second edition of the

Glossary (http://amsglossary.allenpress.com/glossary).

Adiabatic process: deals with the changing temperature of a parcel of air due to the

air rising or sinking. An adiabatic process assumes no heat, mass or momentum

pass across the air parcel boundary.

Analysis: is the production of an accurate image of the true state of the atmosphere

at a given time, represented by a collection of numbers, usually on regular model

grids. Objective analysis is an automated procedure for performing such analysis

versus subjective, hand analysis. See also Data Assimilation.

CFL criterion: The three mathematicians named Courant, Friedrichs, and Lewy cre-

ated a criterion which imposes a restriction on the size of the integration time

step based on the reciprocal of the smallest spatial step. Because of the CFL

criterion, a modeller cannot arbitrarily choose a horizontal grid spacing without

also taking into account the time step of the model.

Cyclogenisis: Process of initiation or intensification of a cyclonic circulation in the

atmosphere; the opposite to cyclolysis.

Cyclolysis: Process of weakening or terminating of a cyclonic circulation in the atmo-

sphere;the opposite of cyclogenesis.

Cyclonic circulation: Atmospheric circulation associated with a cyclone (depression,

low pressure area). It is counterclockwise in the Northern Hemisphere and clock-

wise in the Southern Hemisphere.

Data Assimilation: Data assimilation is an analysis technique in which the observed

information is accumulated into the model state by taking advantage of consis-

tency constraints with laws of time evolution and physical properties. It is the
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process of combining observations and short- range forecasts to obtain an initial

condition for NWP. The purpose of data assimilation is to determine as accurately

as possible the state of the atmospheric flow by using all the available information.

Diabatic process: Process where any temperature change of air is not related to an

air parcels adiabatic vertical displacement. The prime contributor to diabatic

heating is the sun.

First Guess: The use of short-range forecasts as a first guess has been universally

adopted in operational systems into what is called an ”analysis cycle”. Initially

climatology, or a combination of climatology and a short forecast were used as a

first guess. The first guess or background field is our best estimate of the state of

the atmosphere prior to the use of the observations.

Forecast: is a scientific predictions about future states of the atmpsphere made with

a numerical model or method. A forecast incorporates meteorological, oceano-

graphic, and/or river flow rate forecasts; makes predictions for locations where

observational data will not be available; and is usually initialized by the results

of a nowcast. see also Numerical Forecasting.

Front: In meteorology, generally, the interface or transition zone between two air

masses of different density.

Frontal System: The orientation and nature of the fronts within the circulation of a

frontal cyclone (cyclonic circulation).

Hindcast: is a scientific predictions about past states of the atmpsphere made with

a numerical model or method. These predictions rely on either observed or fore-

cast data, not on hypothetical data. A hindcast incorporates past or historical

observational data.

Hydrostatic Approximation: An approximation in geophysical fluid dynamics that

is based on the assumption that the horizontal scale is large compared to the
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vertical scale, such that the vertical pressure gradient may be given as the product

of density times the gravitational acceleration.

Initial Conditions: Initial conditions in a global model are prepared by making a

synthesis of observed values of atmospheric fields taken over a for example 24

hour period and short-range forecasts provided by the global model itself. This

synthesis is a process of assimilating observed values into a model. The use of both

observations and model forecasts in the construction of initial values is required.

High quality data are sparsely and irregularly distributed over the globe. Short-

range model forecasts carry knowledge forward in time of earlier observations and

also provide a crucial background for extracting useful information from expensive

satellite observations.

Isopleth: An isopleth is a line of equal value (a Greek word iso - equal; pleth - value).

A weather map contains isopleths of different weather parameters.

Isobar: Isopleth of Pressure

Isotherm: Isopleth of Temperature

Isotach: Isopleth of Wind Speed

Jet Stream: A jet stream is a narrow stream of relatively strong winds. The existence

of the polar front jet streams is tied to the presence of horizontal temperature

gradients. If temperature gradients exist through a deep layer of the troposphere,

a pressure gradient force increases with height throughout the layer, and so does

the wind.

Mesosphere: The mesosphere starts just above the stratosphere and extends to 85

kilometers (53 miles) high. In this region, the temperatures again fall as low as -93

degrees Celsius as you increase in altitude. The chemicals are in an excited state,

as they absorb energy from the Sun. The mesopause separates the mesophere

from the thermosphere.
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Nowcast: is a scientific predictions about the present states of the atmpsphere made

with a numerical model or method. A nowcast incorporates recent (and often

near real-time) observed meteorological, oceanographic, and/or river flow rate

data; covers the period of time from the recent past (up to a few days) to the

present; and makes predictions for locations where observational data are not

available. The present is the time at which the nowcast is made, and at which

the most recent observations are from a few minutes to an hour old.

Numerical Weather Prediction: NWP is an initial- boundary value problem: given

an estimate of the present state of the atmosphere (initial conditions), and appro-

priate surface and lateral boundary conditions, the model simulates (forecasts)

the atmospheric evolution.

Numerical Integration: A solution of the governing equations of hydrodynamics by

numerical methods. The numerical solutions are carried out with the aid of com-

puters ranging from desktop workstations to the most powerful computers avail-

able.

Numerical Forecasting: (Also called mathematical forecasting, dynamical forecast-

ing, physical forecasting, numerical weather prediction.) The integration of the

governing equations of hydrodynamics by numerical methods subject to specified

initial conditions. Numerical approximations are fundamental to almost all dy-

namical weather prediction schemes since the complexity and nonlinearity of the

hydrodynamic equations do not allow exact solutions of the continuous equations.

Mesoscale: Pertaining to atmospheric phenomena having horizontal scales ranging

from a few to several hundred kilometers. From a dynamical perspective, this term

pertains to processes encompassing deep moist convection and the full spectrum

of inertio-gravity waves but stopping short of synoptic-scale phenomena, which

have Rossby numbers less than 1.

Parameterisation: The representation of physical effects in a dynamic model in terms
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of simplified parameters, which represent a series of simplifications of the full

turbulence model to remove complex terms and form a closed set of equations

that lead to a hierarchy of so-called closure models of decreasing complexity.

Primitive Equations: The Eulerian equations of motion of a fluid in which the pri-

mary dependent variables are the fluid’s velocity components. These equations

govern a wide variety of fluid motions and form the basis of most hydrodynami-

cal analysis. In meteorology, these equations are frequently specialized to apply

directly to the cyclonic-scale motions.

Spherical coordinates: A system of curvilinear coordinates which is natural for de-

scribing positions on a sphere or spheroid.

Stratosphere: The stratosphere starts just above the troposphere and extends to 50

kilometers (31 miles) high. Compared to the troposphere, this part of the atmo-

sphere is dry and less dense. The stratopause separates the stratosphere from the

next layer.

Synoptic Scale: Used with respect to weather systems ranging in size from several

hundred kilometers to several thousand kilometers, the scale of migratory high

and low pressure systems (frontal cyclones) of the lower troposphere.

Thermosphere: The thermosphere starts just above the mesosphere and extends to

600 kilometers (372 miles) height. The temperatures go up with increasing alti-

tude due to the Sun’s energy. This layer is known as the upper atmosphere.

Troposphere: The troposphere starts at the Earth’s surface and extends 8 to 14.5

kilometers high (5 to 9 miles). This part of the atmosphere is the most dense.

Almost all weather is in this region. The tropopause separates the troposphere

from the next layer. The tropopause and the troposphere are known as the lower

atmosphere.
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