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Abstract

Determining the most probable forecast from an ensemble of fore-

casts requires suitable statistical tools. They must enable an forecaster

to interpret the model output, to condense the information and to pro-

vide the desired product. For this purpose, a probabilistic multi-trend

filter (pmt-filter) for statistical post processing of ensemble forecasts

is introduced. It provides an alternative to ensemble classification

methods that are in use today. In essence, the algorithm is a forward-

backward clustering method that strips off those ensemble members

that do not follow a group or are only temporarily the most proba-

ble forecast. Here the underlying theory is developed and a practical

application of the pmt-filter to data from a multi-scheme ensemble

prediction system are shown.
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1 Introduction

The use of ensembles is intended to provide a set of forecasts which cover the

range of possible uncertainty, recognising that it is impossible to obtain a sin-

gle deterministic forecast which is always correct (Legg et al., 2002). Ensem-

ble forecasts are widely used. A well known application are weather ensemble

predictions (e.g. Molteni et al., 1996; Tracton and Kalney, 1993; Pellerin et

al., 2003). These weather ensemble predictions in turn are employed in elec-

tricity demand forecasting (Taylor and Buizza, 2003; Lang et al., 2006), as

input for hydrological models (e.g. Gupta et al., 2002; Gouweleeuw et al.,

2005), or ocean models (e.g. Farina, 2002; Vialard et al., 2005). Ensembles

also find widespread application in earthquake studies (e.g. Liu et al., 2004;

Rundle et al., 2006) and ensemble stream flow forecasting (e.g. Georgakakos

et al., 2004; McIntyre et al., 2005; Moradkhani et al., 2005). Palmer (2002)

lists further applications of ensemble forecasts, ranging from ship rerouting,

pollution modelling, weather- and climate-risk finance, disease prediction and

crop-yield modelling. Realising the full potential of an ensemble forecast re-

quires statistical post processing of the model output (Gneiting and Raferty,

2005). A major challenge of ensemble prediction is to condense the large

amounts of information provided by ensembles into a user-friendly format
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that can be easily interpreted and used by forecasters (Tracton and Kalnay,

1993). Various approaches are in use to aid in determining the most probable

forecast from the ensemble. Cluster analysis is a well established multivari-

ate technique which is commonly employed for this purpose (see Gong and

Richman (1995) for an extensive overview; further applications can be found

in e.g. Alhamed et al., 2002; Yussouf et al., 2004; Nakaegawa and Kana-

mitsu, 2006). An alternative method to classify ensemble forecasts is tubing

(Atger,1999).

Although these methods are useful tools at single points in time, none of

these methods consider past and future states. When dealing with time se-

ries of data, it is however desirable to create a smooth function over time.

To avoid the algorithm to jump from one likely outcome to another, a time

filtering method is required. For this reason the probabilistic multi-trend

filter (pmt-filter), a time dependent clustering method for time series anal-

ysis of ensembles, is introduced. Its practicality and potential are shown by

presenting a sample application to wind power ensembles.
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2 A new ensemble classification method

The classification of the ensemble members into groups of probable outcomes

of the meteorological future is an important and challenging operation. The

detail of interpretation of derived probabilities from ensemble predictions

depends strongly on the specific requirements of the end user. A computer

cluster, running an Ensemble Prediction System (EPS), will produce large

amounts of data in a rather short period of time. However, generally only a

fraction of the ensemble contains relevant information for the end user. Fur-

ther analysis and presentation of the data is therefore equally important to

the generation of the ensemble itself. An efficient way to reduce the amount

of information is to use the ensemble mean. However, the mean is only a suit-

able choice, if the predictions of all ensemble members are equally accurate.

At present two methods are commonly used to preselect ensemble members.

These are clustering and tubing. The clustering procedure yields an unbiased

selection and groups ensemble members around hypothetical centroids. It is

therefore a basic selection procedure towards similarities in the data. Tub-

ing on the other hand groups ensemble members according to the criterion

of similar distance from the ensemble mean. It groups members along axes

starting from the ensemble mean and reaching towards the extremes of the
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distribution. These axes represent the variation of the ensemble members

deviating from the mean (Atger, 1999).

Here a new method is proposed as an alternative to these classification

methods: the probabilistic multi-trend filter (pmt-filter). The pmt-filter is

based on the classical clustering method, yet it selects groups of ensemble

members by taking the past and future of the ensembles into account. It

is a forward-backward clustering method that strips off those members that

do not follow a group or are only temporarily the most probable outcome.

The algorithm is designed as a method to determine a conservative guess of

the most probable outcome of e.g. the output from an ensemble forecast. It

should help to build up confidence for interpreting the probability distribu-

tion and estimate the risks for certain actions due to the uncertainty that is

inherent to forecasting.

It was found that the classical clustering method produced unacceptably

abrupt changes in the computations of the most likely meteorological fu-

ture. In fact, it was observed that when computing the most likely outcome,

computed as the group with the highest probability, the classical clustering

algorithm ”hopped” from one possible future to the next within one time

step. This caused the algorithm to become very unstable whenever there
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were two or more larger groups of members that had similar probabilities.

Therefore, a method was developed that utilises the past and future prob-

ability distribution as weighting function. This means that those members

that had highest probability in the previous time step start in the current

time step with a higher weight than the other members. In that way, the

individual members follow certain groups with characteristic structure, once

the selection has passed the forking point.

Figure 1 is a graphical demonstration of the pmt-filter. In this example,

we focus on six ensemble members (A through F). The ensemble members

could also be groups of ensemble members. These members are ranked with

a traditional clustering technique. The difference between the pmt-filter al-

gorithm and a traditional cluster analysis is that the pmt-filter forms groups

that persist over time. In this graphical example replicates B,C,D and F are

grouped closely during the last 3 time steps (n-3 to n). In the next time

step replicate F leaves the group and forms a new group with replicate E.

Over the three time windows backward (n-1..n-3), the present state n and

forward states (n+1..n+3), the replicates B,C and D represent a clustered

group. This group is a robust and consistent forecast.

The method introduced here to employ the past and future probability
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distribution will be referred to as forward-backward stepping. Long term

statistics are used in the algorithm for the initial guess, but the selection

becomes gradually more dynamic as the iterations progress. The algorithm

can also be applied in two-dimensional space, i.e. for two-dimensional fields.

2.1 Mathematical formulation of the pmt-filter

The pmt-filter developed here is a mathematical filter to compute probabil-

ities for ensemble members. However, it can certainly be utilised in other

applications. It must be noted, that the probabilities are entirely computed

from the density of the ensemble, while one parameter, the best guess is

computed implicitly. This best guess forecast should reflect the most likely

outcome of the ”weather” in contrast to the ensemble mean.

In the first step the vector fcp(i, j), which are the forecasts of all ensemble

members (i) over the forecast length j and weight coefficients cw(i, j, k) for

all ensemble members (i) over the forecast length (j) are coupled in time-

space (k) to take the past and future development into account. The coupled

terms are solved in an implicit iteration process and then decoupled again.

The iteration algorithm uses forward-backward stepping. A time-averaging

filter is applied that iterates three times to smooth the time series. The
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width of the time window spans from −k to +k. The “best guess” forecast

fcbestg(i, j) with the highest probability over the increased time window can

then be defined as:

fcbestg(i, j) = f̃ cp(i, j) + fcmean(i, j) (1)

with

fcmean(i, j) =
1

neps

neps∑

i=1

fcp(i, j) (2)

where i = 1, 2, ...neps is the number of ensemble members, j = 1, 2, ...fclen

is the time step variable over the forecast length (fclen) or data dimension

of each ensemble member. The f̃ c(i, j) is the forecast that is updated after

each iteration process of the pmt-filter algorithm. The mean of the ensemble

fcmean is subtracted from each forecast to let the function vary around zero

and added again after each iteration step.

As mentioned before, the weight function cwp is coupled in time, and the

ensemble mean normalised forecasts are integrated over the time range −k

to +k. The coupling in time of the weight functions and the forecasts is

performed by
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f̃ cp(i, j) = fcpmax(i, j + l) − fcmean(j + l) (3)

where i = 1, 2, ...neps, j = 1, ...fclen and l is the increased time interval

over past and future time steps −k, ..k and A(l) is a weight function in this

interval. Note, that the mean fcmean is computed over the time interval l.

The forecast fcpmax with the highest probability over the time interval -k

to k is computed from the probability distribution of the ensemble and the

weight function cwp:

fcpmax(i, j + l) = peps(i, j) · cwp(i, j) (4)

cwp(i, j) =
k∑

l=−k

[cwp(i, j + l) · A(l)] (5)

The indices are the same as for f̃ cp. The two parameters cwp and fcpmax

are passed to the implicit algorithm to compute the probability distribution

and the forecast with maximum probability (fcpmax) in the “time-coupled”

system (-k..k).

The weighting factor cwp is in the first step estimated from a long-term

statistical coefficient. If this coefficient is unknown a priori, it can initially be

set to 1. The function A(l) could also contain inherent weight coefficients, if
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it would be known that the quality of the individual ensemble member is not

the same. In that case the matrix A(l) can be used to simulate a ensemble

with equally skillful ensemble members.

After the first iteration process cwp is updated with c̃w over the full fore-

cast length and decoupled again by inverting the weight function A(l) in the

following way

cwp(i, j, k + 1) =
fclen∑

l=0

(c̃wp(i, j + l, k) · A−1(l)). (6)

Note, that the functions are decoupled after completion of the integration

process to the actual time step.

Inside the pmt-filter algorithm, the ensemble forecasts are first evaluated

according to their probability density with an Euclidean distance measure.

The individual forecasts are now integrated to a sum, minima, maxima and

the mean of the forecasts ˜fcmean. A matrix of parameter bins and time

is built to select, which members are contained in the bins. A probability

density function can then be calculated.

sumcw =
neps∑

i=1

cwp(i). (7)

The pmt-filter function δeps is used for the selection procedure of the
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forecast with the maximum probability to occur (fcpmax), also referred to as

“best guess forecast” earlier.

The intervals for the integration of the probability density function peps

are defined by δeps. For fceps within the interval zmin1 and zmax1, j=1, δeps

is the sum of all weights in this interval. If fceps lies within the interval

zmin2,zmax2, j=2 and δeps is the sum of all weights within this interval

δeps(j) =
ny∑

i=1

cwp(n)





j = 1 for zmin1 < fceps(i) > zmax1

j = 2 for zmin2 < fceps(i) > zmax2

(8)

where n = 1, 2, ...ny.

The intervals are updated in each iteration step and parts of the intervals

are cut off, until the function converges to the maximum probability, “best

guess”, value of fcpmax.

The minima and maxima zmin1, zmax1, zmin2,zmax2 define two intervals of

the probability function and thereby reduce the required number of iterations.

The pmt-filter function has therefore a second implicit level. The definition

of the minima and maxima are:
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zmin1 = wmin

zmax1 = 0.25wmin + 0.75wmax

zmin2 = 0.75wmin + 0.25wmax

zmax2 = wmax

(9)

The pmt-filter function is now used to define the boundaries of the in-

tervals. Thorough test revealed that for δeps(1) = δeps(2), the coefficients

a1 = 0.875 and b1 = 0.125 proved to be most suitable. Hence, for

δeps(1) = δeps(2)





z∗min1
= a1zmin1

+ b1zmax1

z∗max2
= a1zmax2

+ b1zmin2

(10)

and for

δeps(1) > δeps(2)





z∗max2
= a2zmax2

+ b2zmax1

z∗max1
= a2zmin1

+ b2zmax2

z∗min2
= a2zmin1

+ b2zmax1

(11)
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and

δeps(1) < δeps(2)





z∗max1
= a2zmin2

+ b2zmin2

z∗min2
= a2zmin1

+ b2zmax2

z∗max1
= a2zmin2

+ b2zmax1

(12)

For the second and third set of boundaries, thorough tests have shown

that suitable approximations for these coefficients are a2 = 0.75 and b2 =

0.25.

Then the maximum probability fcpmax is updated by updating the inter-

vals/bins of the probability distribution with the new zmin and zmax, hence

fcpmax = max[peps(n)] (13)

fcpmax is computed for the intervals 1, ..n and n, ..ny, where n is:

n = (ny ·
zmean − wmin

wmax − wmin

+ 1)(ǫW ) (14)

where zmean = 1
2
(zmin1

+ zmax2
)

The “best guess” forecast with the maximum probability over the time

step fcpmax is then:
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fcpmax = ˜fcmean





∑neps

i=1 cwp(i) = 0

peps(n) = 100

(15)

or for

fcpmax =
fcsum(n)

sum(n)





∑neps

i=1 cwp(i) 6= 0

Peps(n) = 0

(16)

The distribution of the remaining probabilities is split into an upper and

a lower part. The upper part is defined as

fcpmax < ny,u ≤ 100 (17)

and the lower part is defined as

0 < ny,l ≤ fcpmax (18)

The probability distribution is computed for both the upper and the lower

part by integrating over the probability bins ny

sumeps =





100∑n−1

i=1
peps(i)

for 1 < ny ≤ n − 1

100∑ny

i=n+1
peps(i)

for n + 1 < ny ≤ 100

(19)
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The index n = 0..ny is used to reduce the boundaries according to the

intervals for which fcpmax was computed. The initial value of sumeps is set

to 0.5 times peps(n).

The last step is the decoupling in time of the weight function from the

time window −k..k to the actual time step according to (6). The “best

guess forecast” with the maximum probability over the time window -k to k

fcpmax(i, l), is now calculated by using the updated cwp and fcpmax from the

pmt-filer:

c̃wp(i, l) = peps(i) for 1 ≤ i ≤ neps (20)

fcpmax(i, l) = min(|(fceps(i) · c̃wp(i) − fcpmax(i)|) for 1 ≤ i ≤ neps

(21)

The other parameters csum, fcsum, wmin, wmax, ˜fcmean, peps are then re-

calculated according to (??), (??), (??), (??), (2) and the probability density

function peps(n).

If the algorithm is run for a single site, the output contains a series of

tables of probabilities for each bin with maximum and minimum percentages.

The tables are created for each hour of the forecast length of e.g. 72 hours.
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The values for the “best guess forecast”, the minimum and maximum and

the mean are also tabulated.

If the pmt-filter algorithm should be applied for parameter fields, the

iteration needs to be computed in space rather than in time, or of course in

both time and space. This means that the algorithm has to be applied in

a 2-dimensional or 3-dimensional way. For the case of field calculations, the

uncertainty of the forecast needs to be extended into the horizontal space,

i.e. if one member is best at one grid point, it is required to be best at the

next grid point as well. However, the principle is the same.

To summarise, the best guess forecast, which is the forecast with the

maximum probability over an increase time interval (−k, ..i, ..k) reflects the

concept of the pmt-filter, namely, that it is better to trust a smaller group of

forecasts over a longer time window, than to trust in the highest probability

in each time step. The ensemble mean usually gives a very skillful, but

also relatively smooth forecast. The mean is also often biased by outliers in

extreme situations, whereas this is not the case for the best guess forecast.

In longterm statistics and when considering parameter fields, it was found

that a statistically weighted ensemble mean scores better than the best guess.

However, it has not yet been tested to apply the statistical weights as a fixed
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part of the weight function A to ensure that the skills of the individual

members does not destroy the skill of the best guess forecast from the pmt-

filter. Additionally, the best guess forecast showed a clear advantage over the

ensemble mean and the statistically weighted mean for all observed extreme

events, because it does not take outliers into account. That means, the larger

the spread and the larger the uncertainty of the forecast, the more likely will

the best guess forecast deviate from the mean and the better it scores relative

to the mean.

It has been found that the correlation between the prediction skills of

the best guess forecast, when iterating over −6 to +6 hours is highest. This

knowledge is used to find patterns, where groups of members perform well

over a certain time interval and transform this into weight coefficients. These

coefficients are taken into account in the selection procedure of the best guess

forecast. To improve this procedure and the learning algorithm, it will how-

ever be necessary to include long term statistics, climatic or weather spe-

cific weights and weights for the skills of the individual ensemble members.

When working with multi-scheme ensembles, where the members differ in

their physical parameterisations, which naturally differ in their skills at dif-

ferent weather situations, this difference should be taken into account in the
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weight matrix.

2.2 Sample application of the pmt-filter

In Figure 2 an example of a real world application of the pmt-filter is given.

The probability plot displays aggregated wind power production in the the

Western part of Denmark on the 17th of March 2005 at 12 UTC and 72

hours ahead with an ensemble of 75 individual forecasts of wind power pro-

duction. The ensemble data was generated by a short-range multi-scheme

ensemble system. The multi-scheme approach is well suited for short-range

applications, where the uncertainty lies mostly in the development of the fast

physical processes (e.g. Stensrud, 1999, 2000; Möhrlen, 2004).

The white solid line displays the “best guess forecast” derived from the

pmt-filter and the dashed line displays the mean of the ensemble. The gray

shading on figure 2 shows the probability density of the forecasts and indi-

cates how different forecast cluster together to “groups” of possible outcomes,

as described above (Figure 1).

Figure 3 displays a box plot of the same forecast as in Figure 2. Even

though the box plot describes the probability density of the forecast with the

median, lower and upper quartiles, it can be seen in Figure 3 that the density
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of the forecast is not always enough information to interpret the evolution of

an event over time.

In many real applications, the end-user needs to take actions upon fore-

casts. In such cases, a plain probability density output with median and

quartiles at one point in time does not provide enough information to eval-

uate their risk. In some cases a user would choose the minimum, the mean,

median or the maximum for the safest operation, or least economic loss. One

of the largest problems an end user faces is the fact that his decision is to

made over a number of hours or days and seldom at one specific point in time.

Therefore, it is imperative to many end-users to get a probability distribu-

tion over a time range that is optimised to his needs. In many applications

the decision is also more complex and manifold than a simple on/off signal.

If, for example, the likelihood of a certain event, such as “rain” or “no rain”

is changing over the course of the time interval an end-user requires to take

action, then the decision process becomes too complicated for a human brain

to combine past and future probabilities at each time interval to find the

most likely solution.

It is particularly for those cases that the pmt-filter provides the necessary

information. It can be seen in the example (Figure 2) that the path of the
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“best guess” derived from the pmt-filter (black solid line) deviates from the

median especially when the uncertainty increases, i.e. when the ensemble

spread increases. Because the pmt-filter searches for “groups” of possible

outcomes forward and backward in time at each time step and selects by

taking the past and the future into account, it is simulating the way an

operator would evaluate the situation, but with more information than the

operator could possibly use. It is interesting to see in this respect that

the difference between the mean of the ensemble and the “best guess” is

smallest when the uncertainty is small and largest, when the uncertainty is

high (between 10 UTC to 00 UTC on the third day of the forecast).

The forecast in Figure 2 demonstrates this principle. In the first 24 hours

from 12UTC to the next day, the uncertainty of the forecast is rather small

and a decision making process is easy. After 12 UTC on the second day,

however, it becomes more difficult to take decisions. When following the

individual “groups” of possible solutions and their change over time a sta-

tistical filtering becomes absolutely necessary. This is when the pmt-filter

is most beneficial, as it selects the “best guess” in each time step according

to constraints made by the end-user. If no constraints are given, it searches

for the most logical outcome with help of statistical parameters, i.e. the
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probability density is followed forward and backward to take the most likely

path. In the next section, using an application to an extreme event, it will be

shown how the constraints can be defined and how those constraints affect

the results.

3 Application of the pmt-filter: The Danish

Storm in January 2005

On the 7th of January 2005 the hurricane ERWIN moved from the British

Isles towards the southern part of Norway (German Weather Service , 2005

and DMI, 2005) and reached Denmark on the 8th of January (see Figure 4).

The Danish Meteorological Institute (DMI) declared the storm as the

best predicted storm in several years (DMI, 2005), The Danish transmission

system operator’s (TSO) interpretation of the forecast from their operational

forecasting tool for wind power did not give the same information and hence

resulted in the assumption that the storm will not affect the wind turbine

production. If wind speeds of more than 25 m/s are measured over a time

span of more than 15 min, wind turbines switch off production. In the wind

energy community this is referred to a “cut-off”.
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The pmt-filter is applied to this event and to demonstrate the usefulness

of an ensemble forecasting system in risk assessment. This example also

demonstrates the necessity and importance of interpretation tools for the

uncertainty in weather (ensemble) prediction, such as the pmt-filter.

Figure 5 shows a probability graph generated with the pmt-filter of a wind

power production forecast over 72 hours of the western part of Denmark. The

power production is given in % of installed wind power capacity. A generation

of 100% would correspond to a power production of 2900 MW.

¿¿From the ensemble spread in Figure 5, it can be seen that some of

the ensemble members did not reach wind speeds higher than 25 m/s, which

causes wind turbines to switch off (“cut-off”). Hence, the operational forecast

from the TSO was within the ensemble spread and the operator in the TSO

had very little possibility to quantify the risk of a “cut-off” from the single

deterministic forecast as it happened.

The ensemble forecasts however indicate that there was a risk for “cut-

off” of large amounts of wind power. The ensemble hence adds value not

only because the “best guess” (white solid line in Figure 5 computed by the

pmt-filter) of the ensemble forecast indicates a significant drop of power pro-

duction, but in addition because the end-user gets the possibility to evaluate
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and foresee the risks arising from large scale “cut-off” of wind power.

Today, risk analysis is becoming a more and more important issue under

such conditions, because focus is no longer only on the danger to life, but

also on insurance and liability disputes, which are one of the side effects of

liberalisation of modern globalised economy (Carpenter, 2005).

This example demonstrates clearly that in such events, not only the

weather forecasts, but also wind power forecasts derived from an ensem-

ble of weather forecasts, are imperative information in such events. Part of

the risk assessment is in this case the capability to evaluate the likelihood of

reduced transmission capacity from wind turbine “cut-offs”, damages on the

electricity lines and reduced consumption on the grid.

With wind speeds above 40 m/s on the west coast of Denmark (see Figure

6), there was a serious risk of damages that would affect the operation of the

electrical grid. The result was in fact that part of Denmark was without

electricity for several hours and smaller fractions were without electricity for

2 days. In Denmark and the Northern part of Germany, such storms happen

frequently and are a risk for the security of the electricity supply, because the

wind power production exceeds at times the consumption. Such examples

are the hurricanes Anatol and Lothar in 1999, Kerstin and Liane in 2000,
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Anna and Jannett in 2002 and Erwin, Ulf and Dorian in 2005. Most of these

hurricanes move southwest or northwest of the British Isles towards Denmark

and the northern part of Germany and the scale of these hurricanes are often

difficult to predict.

The 8th of January storm was on a relatively large scale and moved slower

than previous storms. Its center was also not close to Denmark. However,

for the TSO in the western part of Denmark, the 8th of January storm was

difficult to predict for two particular reasons. The recovery of wind turbines

that had switched off, because of too high wind speeds, was unpredictable.

This can be seen on the observations in Figure 4 (black dotted line). Older

wind turbines often need to be manually restarted, thus, the turbines did

not recover as the wind dropped below 25 m/s. Secondly, according to the

prediction, the entire area had either full power production from the wind

turbines or no power production.

It was however not very likely that the power production would result

in something like 50%, because the wind was more correlated horizontally

over the entire area than in most other storms. This was due to the spatial

extend of the low pressure system in 2005 (see also figure 6). The wind speed

peaked only at gale force at the northern part of Denmark (Hanstholm) with
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a sharp cold front passage at 16 hours UTC (see Figure 6). As Figure 4

demonstrates, this was forecasted extremely accurate by the ensemble mean

and the “best guess” from the pmt-filter.

Risk assessment of weather is therefore no longer a meteorological prob-

lem, but has also significant impact on other aspects of life, such as the

electricity supply. The same could also be demonstrated on many of the

flooding events around the world.

4 Summary and discussion

A probabilistic multi-trend filter has been developed. The pmt-filter pro-

vides an alternative to previously developed ensemble classification methods

(Atger, 1999, Yussouf et al., 2004, Ziehmann, 2001 ). In comparison to the

Euclidean distance dissimilarity and Ward’s method for hierarchical cluster-

ing used by Yussouf et al. (2004) and Roulston et al. (2003), or the tubing

approach (Atger 1999), and skill prediction as shown by Ziehmann (2001),

the pmt-filter is not only a classification approach for verification of an en-

semble, but has a selecting procedure inherent to generate a “best guess”

from the distribution of the ensemble members.
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As shown in the schematic of the pmt-filter in Figure 1, the strength of the

pmt-filter lies in its applicability to practical applications, such as forecasting

of wind power with an ensemble of forecasts.

In fact, there are a number of possibilities to generate statistical “best

guesses” with the pmt-filter. One possibility has been shown by the example

of a storm event, i.e. to rank the ensemble members at the forecast start

with long-term statistical weights. As discussed in section ??, other pos-

sibilities are to generate weather dependent weight coefficients. At present,

phase adjustments of fronts are tested when online observations are available.

Another possibility is to use bias corrections for each ensemble member. In

both cases the adjustments can be taken into account for the future states

and can be reduced at each time step with a function suitable for the problem

by updating the weight matrix A.

Further developments will include two space dimensions and a second

time dimension. The potential of this method is that it allows for previous

forecasts and observations to be taken into consideration in the ensemble

evaluation. However, members from such “older” forecasts should not be

allowed to control the time evolution, unless they show good agreement with

the ”newer” forecasts or the observations. The ”older” forecasts will also
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only be accepted as likely, if they follow a group of ”newer” forecasts.

The strength of this approach is that it evaluates the data automatically

in a manner that is similar to an experienced human operator, as it filters

out the poor forecasts and thereby provides more accurate and “real” proba-

bilities. The pmt-filter therefore also contains a inherent learning algorithm,

when online observations are present.

It is also an efficient way to selectively reduce the amount of data. When

compared to a set of static weight coefficients, it is argued that the potential

improvement of the pmt-filter is higher when all possible members (also from

previous forecasts) are taken into account with at least 1% weight.

To conclude, ensemble forecasts add essential information for the evalua-

tion of extreme events. The forecasts alone are however not always sufficient

information for decision making. The application of the pmt-filer as an alter-

native to standard statistical parameters allows operators, civil protectors,

disaster management and control centres to evaluate a critical situation some

time prior to the event and to make necessary arrangements in the case of ex-

treme events. Here the pmt-filter has been applied to an extreme event in the

electricity industry with wind power on their grid. However, the application

of the pmt-filter is by no means limited to such applications. It can be applied
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to any decision making procedure that involves weather parameters, such as

problems of flooding, hurricanes, weather derivatives, economics, stocks, to

name only a few applications.
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Figure captions

Figure 1. Qualitative demonstration of the pmt-filter algorithm for an arbi-

trary forecast quantity and an arbitrary forecast time. Shown are 6 en-

semble members (A, B, C, D, E and F). The ellipsoids mark the grouping

procedure.

Figure 2. Example of a probability forecast of aggregated wind power for

the western part of Denmark on the 17th of March 2005 generated with

the pmt-filter. The dashed white line is the EPS mean, the solid white

line is the best guess from the pmt-filter. The grey shading displays the

probability density in % power production of wind turbines from the

ensemble.

Figure 3. Box plot of the 72 hour wind power forecast shown in Figure 2.

The solid black line displays the best guess from the pmt-filter and the

dashed black line is the EPS mean.

Figure 4. Satellite image of the hurricane Erwin on the 8th of January 2005

(source: DMI, METEOSAT-8, http://www.dmi.dk/dmi/index/nyheder/

nyheder-2005/danmark ramt af landsdaekkende storm.htm).
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Figure 5. Probability forecast generated with the pmt-filter for the hurricane

Erwin on the 8th of January 2005, showing the probability for a large-

scale cut-off of wind power production (in % installed capacity) in the

western part of Denmark. The graph shows the probability of wind power

production from 6 UTC of the 7th of January + 72 hours. The dashed

white line is the EPS mean, the solid white line is the best guess from the

pmt-filter, the white thin dotted line is a second best guess 2 that takes

“user constraints” (long term statistics) into account, the black dashed

line shows the observations. The grey shading displays the probability

density in % power production of wind turbines from the ensemble.

Figure 6. Measurements of wind speed and wind gusts at the 8th of Jan-

uary over Denmark. The numbers show the highest measured wind

speeds as 10-minute averages (upper number) and wind gusts (lower num-

ber) throughout the storm. (source: Danish Meteorological Institute,

http://www.dmi.dk/dmi/index/nyheder/

nyheder-2005/danmark ramt af landsdaekkende storm.htm)
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