

IEA Wind Task 51 "Forecasting for the Weather-driven Energy System" Workshop

IEC Standard for Renewable Energy Forecasting: Introduction to the Current Working Draft 63531

Wind & Solar Integration
Workshop
Berlin, Germany
8th October 2025

Gregor Giebel, Irene Schicker, Jethro Browell Mouhamet Diallo, Stefan Wilbert, *Zheng Wang (IEC)*

Brief History of Collaboration & Liaison

TC8/SC 8A
Grid Integration of
Renewable Energy
Generation,

Working Group 2: Renewable energy power prediction

IEC ← → IEA

• Technical Report TR63043 was released in 2020 by

https://webstore.iec.ch/publication/26529 - Link to IEC SC8A WG2

• IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions (Nov. 2022)

Link to OpenAccess book

New Work Item TS 63165
 Specification for evaluation of renewable energy power forecasting results

IEA Wind Task 36 Wind Energy Forecasting

IEA Wind
Task 51
Forecasting
for the
weather
driven energy
system

IEC.

2020

First collaborative work Sub-Committee 8A Grid Integration of Renewable Energy Generation, Working Group 2 Renewable energy power prediction based on a collaboration with IEA Wind Task 51.

https://webstore.iec.ch/publication/26529

2022

Elsevier OpenAccess Book

ISBN: 978-0-443-18681-3

PUB DATE: November 2022

FORMAT: Paperback

Editors: Corinna Möhrlen, John W. Zack, and Gregor Giebel

https://www.elsevier.com/books/iea-wind-recommended-practice-for-the-implementation-of-renewable-energy-forecasting-solutions/mohrlen/978-0-443-18681-3

Free download:

https://www.sciencedirect.com/book/9780443186813/iea-wind-recommended-practice-for-the-implementation-of-renewable-energy-forecasting-solutions

IEA Wind Recommended
Practice for the Implementation
of Renewable Energy
Forecasting Solutions

Corinna Möhrlen John W. Zack Gregor Giebel

Lessons Learned in IEA Wind Task 36 & 51

Forecast Evaluation is subjective: meaningful evaluation require applying the 4 corner stones

select carefully what you verify

use more than one score/metric

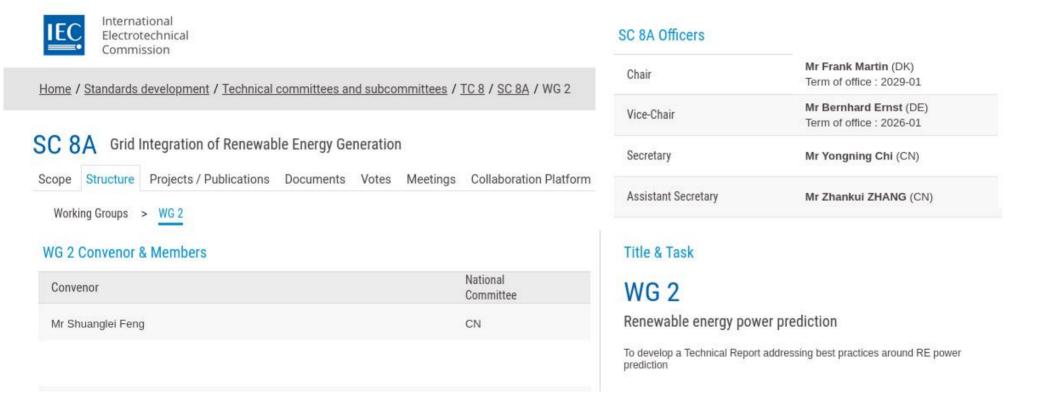
check consistency by applying various tests evaluate the significance of your results

Collaboration & Liaison proposal to work with IEC SC8A WG2 on standard for renewable energy forecast evaluation

Kick-off Meeting in Copenhagen in June 2023

Purpose: Quality Assurance

Technical specification aspects:


- Definitions of renewable energy generation forecasting
- Use cases and case specific requirements.
- Specification, collection, processing methods, and quality control for evaluation data.
- Evaluation framework and process.
- Evaluation methods
- Normative requirements and examples for evaluation result documents

Stakehoder: prediction service providers, wind farm or photovoltaic power plant owners, TSO, prediction technology R&D, stakeholders or individuals.

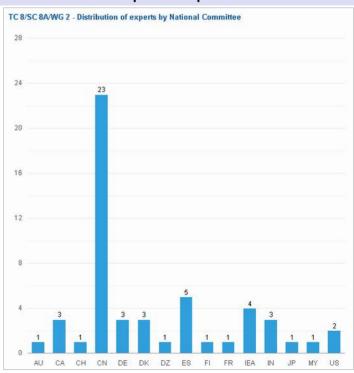
Collaboration/Liaison Proposal to work with IEC SC8A WG2 on standard for renewable energy forecast evaluation

https://www.iec.ch/ords/f?p=103:14:216163584028094::::FSP_ORG_ID,FSP_LANG_ID:13189,25

Status of WG2

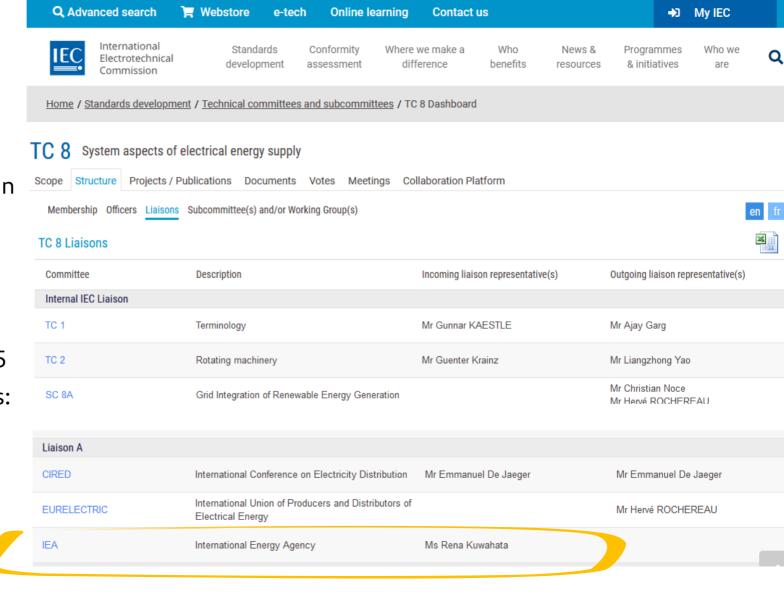
2016-2-5:

Set up Working Group (WG2): Renewable Energy Power Prediction


Task of WG2:

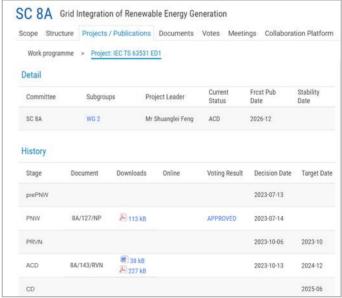
To develop a series of technical standards addressing best practices around RE power prediction.

53 experts from 15 countries


5 IEA Experts

Liaison

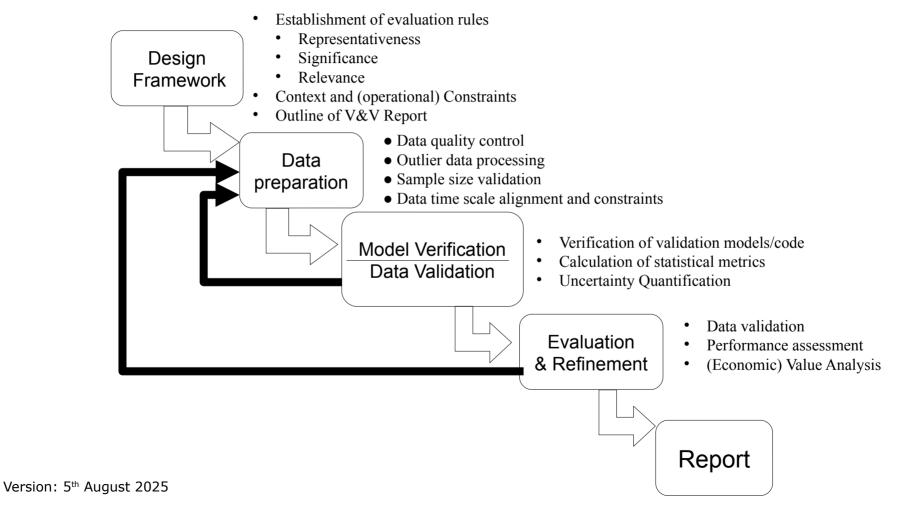
- A-Liaison means we can be involved in standardisation work with that SC
- IEA confirmed that it applies to TCPs in 2025
- Nominated IEA experts:
 Gregor Giebel
 Corinna Möhrlen
 Irene Schicker
 Jethro Browell
 Mouhamet Diallo
 Stefan Wilbert


Status of WG2

- **Technical Report**: IEC TR 63043 "Renewable energy power forecasting technology" was published in November 2020 with the stability sate until 2026. (start ED2)
- **Technical Specification**: IEC TS 63531 "Specification for evaluation of renewable energy power forecasting results" was approved in October 2023. (committee vote to publish in the end of 2025)

1.Scope

- This document of IEC TS 63531 gives guidelines on the evaluation of renewable energy power forecasted results, including framework, data preparation, data validity verification and evaluation methodology etc.
- This document only includes the evaluation of power forecasted results. It does not cover how to
 forecast renewable energy power, as well as the technical specifications that shall be met in
 renewable energy power forecasting.
- This document is applicable to renewable energy power forecasting service providers, renewable energy power forecasting results users, and technical research institutions of renewable energy power forecasting techniques, etc. It can be used to support forecasting service providers and research institutions to identify the problems existing in renewable energy power forecasting techniques, thus optimizing the forecasting techniques and improving the forecasting accuracy; support forecasting users to have an in-depth understanding of the error characteristics of renewable energy power forecasted results, thus optimally purchasing the forecasting services and properly using the forecasting results.
- Renewable energy generation in this document mainly refers to wind energy generation, photovoltaic generation, or a combination of the two.


2. Normative references

- IEC 61400-25 (all parts), Communications for monitoring and control of wind power plants
- IEC TS 61724-3:2016 Photovoltaic system performance Part 3: Energy evaluation method
- IEC 61400-26-1 :2019 Wind energy generation systems Part 26-1: Availability for wind energy generation systems
- IEC TR 63043: 2020, Renewable energy power forecasting technology
- IEC 61724-1:2021, Photovoltaic system performance Part 1: Monitoring
- IEC 62934: 2021, Grid integration of renewable generation Terms and definitions
- IEC 6400-50-1:2022, Wind measurement Application of meteorological mast, nacelle and spinner mounted instruments
- IEA-PVPS 16-6:2024 Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Fourth Edition
- IEA Wind 978-0-443-18681-3:2022 Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions

IEC TS 63531 – architecture

IEA Wind Task 51 "Forecasting for the Weather Driven Energy System" is the largest global discussion group for forecasting Wrote a Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions

- IEC SC8A WG2 "Renewable Energy Power Forecasting" is a standardisation group for renewables forecasting
- Wrote a Technical Report "Renewable Energy Power Forecasting Technology" with strong involvement from IEA Experts
- Now works on a standard on error evaluation based on IEA Recommended Practice

iea-wind.org/task51

Get in touch with us...

Operating Agent & Task Managers:

presenting

Gregor Giebel

Caroline Draxl

Roskilde, Denmark

Golden (CO), USA

grgi@dtu.dk

caroline.draxl@epri.com

Corinna Möhrlen

Assens, Denmark

com@weprog.com

The IEA Wind TCP agreement, also known as the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings, and publications of IEA Wind do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.