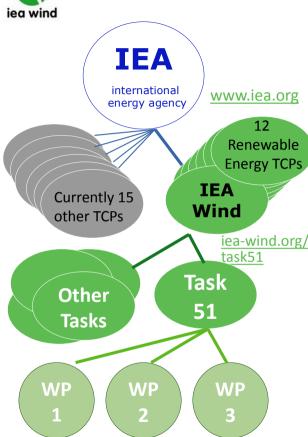


Wind Energy & Science Conference

Session RS#07.4 – Advances in Wind Power Forecasting


Nantes, France - 26th June 2025 -

Extreme Power System
Events within IEA Wind
Task 51 Forecasting for
the weather-driven
Energy System

Corinna Möhrlen (WEPROG) and Irene Schicker (Geosphere Austria)

G. Giebel, H. Frank, C. Draxl, J. Zack, J. Browell, G. Kariniotakis, R. Bessa, D. Lenaghan

Task 51: Forecasting for the weather-driven Energy System

International Energy Agency (IEA) was established in 1973 after 1st oil crisis

- International organization within OECD with <u>30 members countries</u> and 8 associates
- Promotes global dialogue on energy & authoritative analysis via so far 80 TCP*s
- Convenes expert panels to address energy related topics of urgency or importance

* Technology Collaboration Program

Task 51: Forecasting for the weather-driven Energy System:

- One out of 25 Tasks of IEA Wind: https://iea-wind.org/
- Task 51 Phase 1: 2022-2025 (previous Task 36: 2016-2021)
- Operating Agent: Gregor Giebel (DTU), T-Manag.: C. Draxl (EPRI), C.Möhrlen (WEPROG)
- 12 Member countries: AT, CN, DE, DK, ES, FI, FR, IE, PT, SE, UK, US
- Objective: facilitate int. collaboration on renewable energy forecasts
- <u>Participants</u>: (1) research organization and projects, (2) forecast providers,
 (3) policy-makers and (4) end-users & stakeholders

Task 51 Scope: 3 "Work Packages" distributed over 13 "Workstreams"

- WP1: Global Coordination in Forecast Model Improvement
- WP2: Benchmarking, Predictability and Model Uncertainty
- WP3: Optimal Use of Forecasting Solutions

Task 51 homepage: https://iea-wind.org/task51

Founded in 1977, the International Energy **Agency Wind Technology** Collaboration Programme is an international cooperation that shares information and research to advance wind energy research, development and deployment in member countries. The consortium operates under the auspices of the International Energy Agency (IEA).

IEA Wind TCP Research Tasks

Technology Collaboration Programmes

THE FUTURE:

wind energy

supplies 50% of

global energy

needs

Currently 25 active TASKS

Environmental Co-Design

- · Avoiding, minimising, compensating for environmental impacts
- · Incorporating environmental costs, benefits into decisions
- · Addressing both immediate concerns, future impacts

Tasks 32, 42, 45

Social Science

- · Acknowledging the transformational nature of development
- · Creating just processes
- · Valuating benefits, effects, burdens

Tasks 28, 39, 53

The Plant and Grid

- Improving modelling
- Optimising plant design for multiple objectives
- · Readying wind plants for grid support

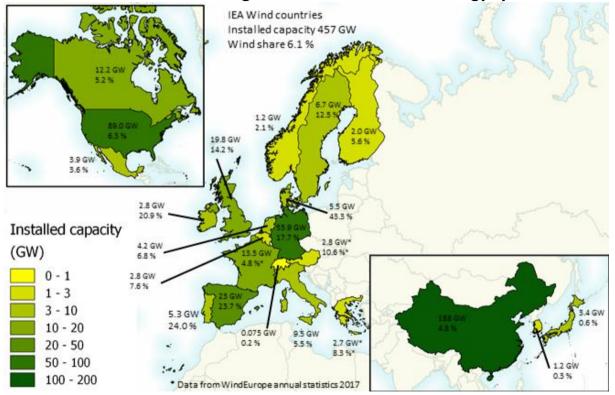
The Turbine

- · Incorporating holistic design
- · Developing intelligent controls, operation, maintenance
- · Advancing industrialisation

Tasks 44, 49, 52 54 & 57

The Atmosphere

- · Increasing atmospheric observations
- · Expanding, validating universal predictive capability
- · Integration, adopting improved models


Tasks 43, 46, 47, 48 49, 51 56

ie

iea wind

task 51: forecasting for the weather-driven energy system

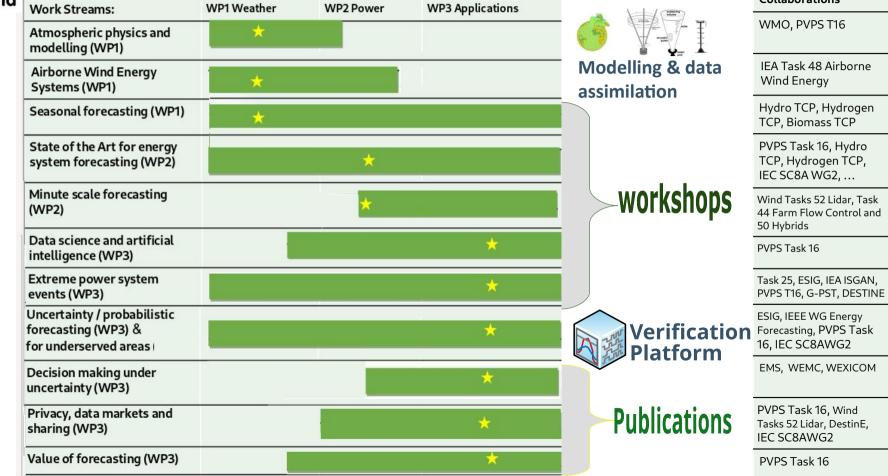
- Task 51 members (12)
- AT, CN, DE, DK, ES, FI, FR, IE, PT, SE, UK, US

T36 Phase 1

T36 Phase 2

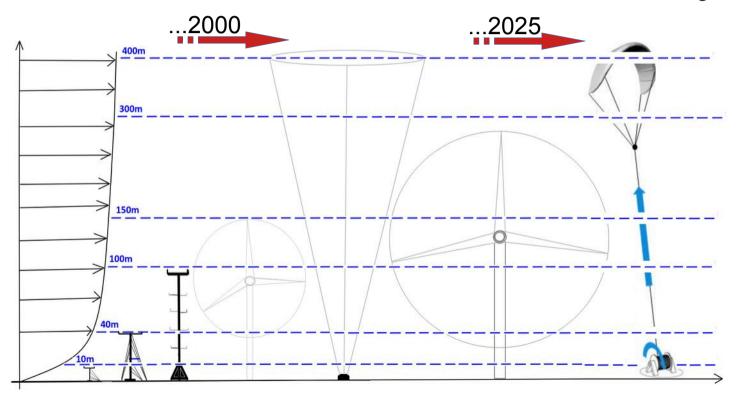
T51 Phase 1+2

2022-2029


Forecasting for the weather-driven Energy System

IEA Wind Task 51 Work - distributed over 11 work streams

Collaborations


iea wind

From groups of single wind turbines to large-scale Wind Energy Systems

Penetration level: From 0.5% wind >50% wind in electric grids

IEA's take on the <u>VRE integration</u> development: *Introduction to iea's VRE integration phases*

Full presentation available here:

Integrating Solar and Wind - Global experience and emerging challenges - launch webinar - Event - IEA

https://www.iea.org/events/int egrating-solar-and-wind-globalexperience-and-emerging-chall enges-launch-webinar

Low phases

Phase 1: VRE has no significant impact at the system level

Phase 2: VRE has a minor to moderate impact on the system

Phase 3: VRE determines the operation pattern of the power system

High phases

Phase 4: VRE meets almost all demand at times

Phase 5: Significant volumes of surplus VRE across the year

Phase 6: Secure electricity supply almost exclusively from VRE

VRE = variable renewable energy

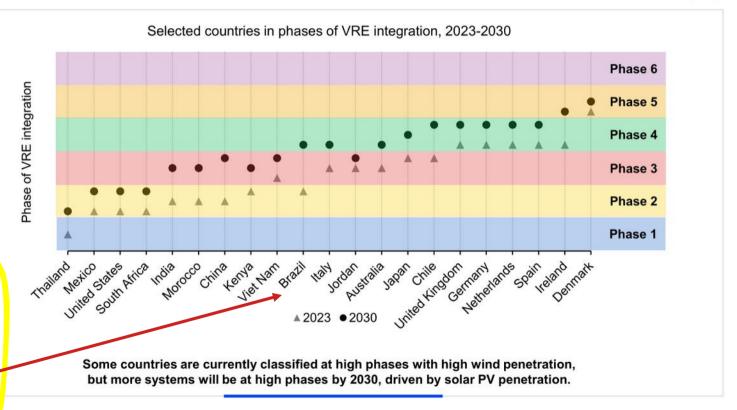
The framework allows policy makers to identify VRE integration measures that need to be prioritised at each phase to ensure its timely implementation.

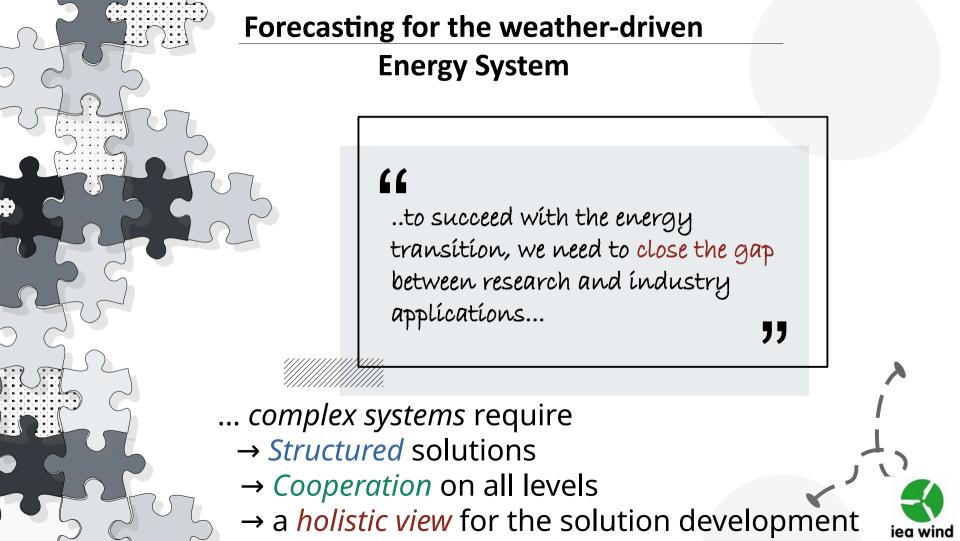
Phases of VRE integration framework

NOTE: Phases are <u>not to</u> <u>be understood as decarbon-</u> <u>isation measures</u>, but as <u>integration challenge</u> !!!

IEA's take on the <u>VRE integration</u> development:

Introduction to iea's VRE integration phases


30



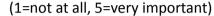
- 2030
- **2023**

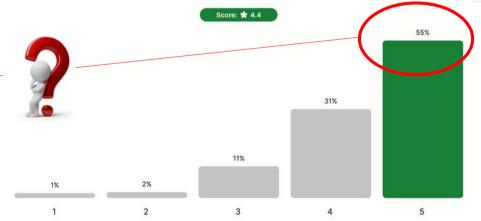
NOTE: Some countries are in low phases due to hydro power prevalence – not necessarily because they are not far enough in the decarbonisation!!

Task 51: Forecasting for the Weather-Driven Energy System

Poll result at a task meeting in **2021** when preparing for the next phase of the task yielded this word cloud ...

What are the most important topics to cover in the next phase of the task? forecast usage seasonal forecasts energy impact of fog in pv value of forecasts probablistic forecasts decision support machine learning offshore probabilistic cloud detection certainty uncertainty standard cases and valida mid-long term forecast virtual data hub probabilistic forecasting value of forecasting standardise terminology uncertainty analysis extended-range forecast value standards validation forecastgames


Where are the gaps ...?

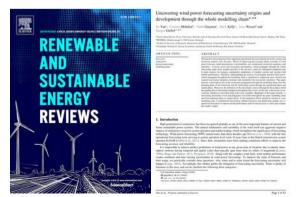

Questions posed to 120 participants in an IEA Wind Task 51 workshop in Vienna in 2024

How do you deal with uncertainty in weather forecasts at the moment?

Al makes forecasting easier and faster. If you (would) get high-resolution forecasts from Al – how important is **uncertainty** and transparency?

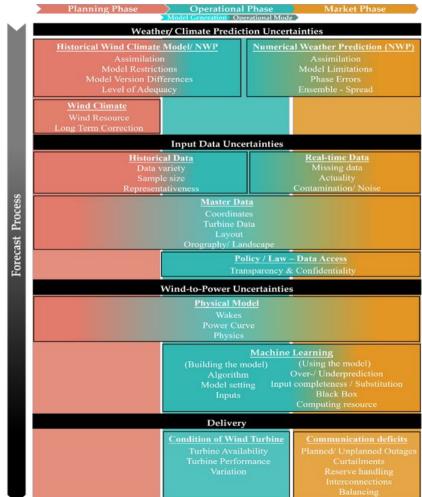
Example 1: Meaning of a "holistitc" view:

Uncertainty Propagation throughout the entire model chain

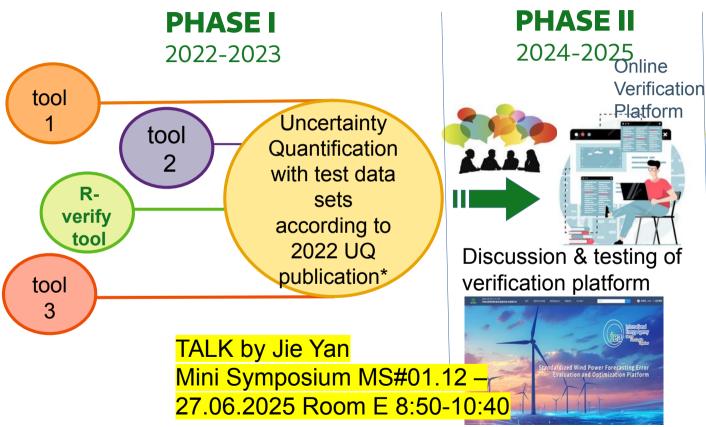

The publication served to

- 1) Define
- 2) describe
- 3) review

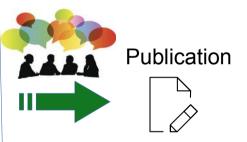
throughout the chain of forecast modelling:


- Uncertainty sources
- Uncertainty mitigation approaches
- Uncertainty validation approaches

for each type of uncertainty source from planning phase → operation phase → market phase


OpenAccess Download:

https://www.sciencedirect.com/science/article/pii/S136403212 2004221

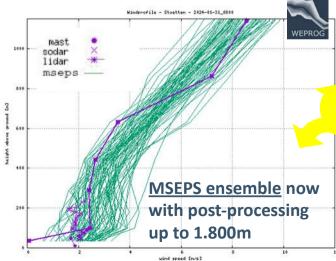

Workstream Uncertainty:

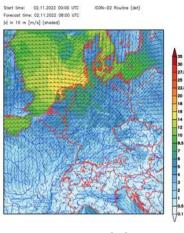
Uncertainty Propagation throughout the model chain with real data

PHASE III

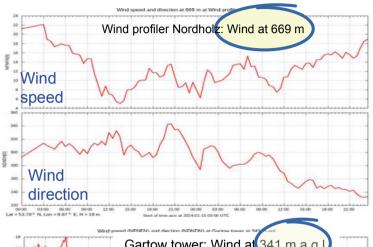
2025...

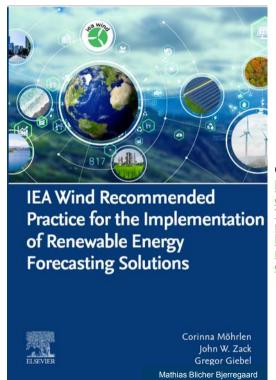
Discussion & writing of publication with most suitable test cases



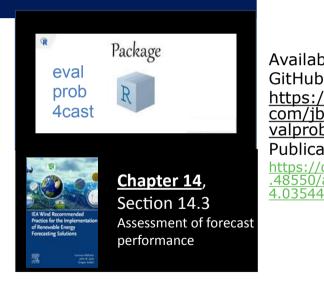

^{*} Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain https://www.sciencedirect.com/science/article/pii/S1364032122004221

Workstream Atmospheric Modelling and Physics & first simulations for airborne wind




ICON-DE model now in 15min resolution every hour

Private and public weather forecast services prepare for phase 4-6


IEA Wind Recommended Practice Example Evaluation Software package: evalprob4cast

Hands-on Examples and IEA-WT51 Verification R-package

Online OpenAccess:

https://www.sciencedir ect.com/book/9780443 186813/iea-wind-recom mended-practice-for-t he-implementation-ofrenewable-energy-fore casting-solutions

Available on GitHub: https://github. com/ibrowell/e valprob4cast Publication: https://doi.org/10 .48550/arXiv.250

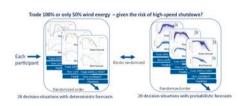
See also our workshops & conference page for workshop presentations

https://iea-wind.org/task51/task51-publications/task51workshops-and-special-sessions/

Decision-making under Uncertainty

"Probabilistic Forecasting Games & Experiments" initiative

1. Experiment (2020)


Game: 12 cases

Decision structure: 12 deterministic Forecasts followed by a probabilistic forecast

After each decision, possible change of decision based on new information

2. Experiment (2021-2024*)

Game: 40 cases

Frade 100% or only 50% wind energy - given the risk of high-speed shutdown?

Decision structure: 20 deterministic cases + decision confidence request 20 probabilistic cases + decision confidence request

^{*} still open...: https://meteorology.mpib.dev/wind-power-decisions/about.html

WS Extreme Power System Events

Resilience of the power system has many faces

- impact changes with penetration levels > 30% of Renewables
- Can forecasts mitigate impact?

Definition of Extremes are dependent on impact

- How can we cooperate on critical conditions?
- What time-scales do we need for mitigation strategies across dicipines?

Collaboration across diciplines

- Multi-diciplinary task requires multi-diciplinary task force groups
 - Meteorologists
 - Energy Meteorologists
 - Grid operators and Power Engineers
 - Traders and Markets
 - Policy Makers
 - Governments

WS Extreme Power System Events

Storm Isha Live

Storm Isha: Second storm, Jocelyn, to hit on Tuesday as thousands remain without power and water

Mayo and Galway

Some 93,000 properties still without electricity as Met Éireann issues further Orange warnings for Donegal.

***** 14:31

What is an extreme event?

Ireland and UK experienced two storms in a row: Isha on Jan, 21st 2024 and

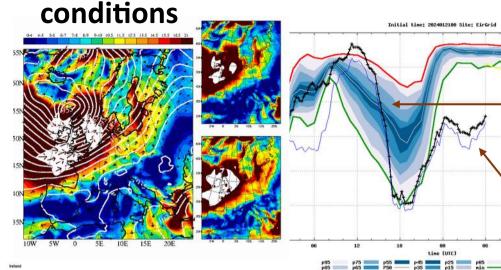
Jocelyn on Jan, 22nd 2024

THE IRISH TIMES

Storm Isha: Thousands without power and ov wind causes damage across Ireland

Flights cancelled and diverted in Dublin Airport due to 'severe and des reporting fallen trees

X Expand



Main points:

- Follow live coverage of the clean-up after Storm Isha in Monday with our live coverage.
- Over 170,000 homes and businesses are without power on Sunday evening
- · A status red weather warning for wind is in effect in Co Donegal
- · An orange weather warning is in effect for all of Ireland
- Earlier red wind warnings issued for counties Mayo and Galway have since expired
- · Dublin Airport says Storm Isha is having an impact on flights
- · Local authorities and fire and rescue services across the country are responding to reports of fallen trees

WS Extreme Power System Events caused by extreme weather

Storm Isha: Thousands without power and over 150 flights cancelled as wind causes damage across Ireland

Flights cancelled and diverted in Dublin Airport due to 'severe and destructive gusts', with several counties reporting fallen trees

Sein Inn 21 2024 - 22 22

Storm Isha: Second storm, Jocelyn, to hit on Tuesday as thousands remain without power and water

Some 93,000 properties still without electricity as Met Éireann issues further Orange warnings for Donegal, Mayo and Galway

What is an extreme event?

Ireland and UK experienced 2 storms within 3 days in **January 2024**The Irish grid operator had to deal with an **-almost 50% cut-off from wind** on Jan, 21st 2024 with storm Isha!

Possible causes for electricity outages:

- Damages in the grid infrastructure
- Fallen trees
- Missing reserves, even though forecasted well!!!

Issues following:

- Re-establishment of the power lines and infrastructure
- Restoration of grid due to non-regulated re-powering of wind/solar units

 Missing inertia
- Missing Fault-ride-through capabilities

Extreme Power System Events – Blackouts -

Large power failure...

Government report concludes: the incident had a multifactorial origin, with three key elements standing out:

- 1) insufficient voltage control capacity
- 2) oscillations creating difficulties to stabilise voltage
- 3) 'apparently improper' disconnections of generation plants
- → temporal cascade of events that progressively unbalanced the system and culminated in the peninsular electricity grid being shut down due to overvoltage

Redeia, the spanish grid operator has disputed the findings,

according to Reuters reportage, saying its own investigation had discovered anomalies in the disconnection of power plants on April 28 even though voltage in the system was within legal limits, as well as an anomalous growth in demand from the transport network.

WS Status: Extreme Power System Events

Collaboration

IEA Wind Task 51 Austria Workshop at the NH Danube City Hotel in Vienna on November 6, 2024

GeoSphere Austria, Austro Control Digital Services GmbH and WEB Windenergie AG are organizing the IEA Task 51 Austria Workshop on...

https://iea-wind.org/2024/07/31 /iea-wind-task-51-austria-worksh op-in-vienna-on-6th-nov-2024/ https://ieatask51-austria.gitlab.geosp here.at/web/workshops/

ENGAGE

Focus on interaction with stakeholders and users

to tackle possible current and future vulnerable hot spots of renewable infrastructure under adverse weather.

DEVELOP

Develop physicsinformed machine learning algorithms

to detect adverse weather for renewable infrastructure in weather forecasts and climate scenarios

RISK AWARNESS

Estimate and quantify the effect of adverse weather

for renewable infrastructure of events, changes in intensity, shift of (current/ future) location of hot spots.

EGUgroup

EnergyProtect A research project connecting adverse weather

and climate with AT and renewables

EGU 2025

The IFA Wind TCP Task 51 Austria – Stakeholder interaction and priorities for forecasts, Tilg, A.-M., Schicker, I., Strauss, L., Mader, F., Niederl, A., Messner, J., Möhrlen, C., EGU General Assembly 2025, Vienna, Austria, 27 Apr-2 May 2025

https://doi.org/10.5194/egusphere-egu25-15415

DestinE Digital Twins

Collaboration with Subtask:

On-demand digital twin extremes forecasting system for renewables - The Destination Farth Extremes digital twin

https://destine.ecmwf.int/news/meteo-france-led-internati onal-partnership-wins-bid-to-develop-destination-earths-on -demand-extremes-digital-twin/

Extreme Power System Events - Definitions -

Event Type	Key Parameters	Severity Levels	Infrastructure Impacts	Impacts on Power Production and Grid Stability
Wind Speed Ramping	Change in wind speed over three time steps (m/s)	- Minor: 3–5 m/s - Moderate: 5–7 m/s - Severe: 7–10 m/s - Extreme: ≥10 m/s	- Turbine cut-in/cut-out at 3–20 m/s - Risk of turbine damage above 25 m/s, structural failure possible at 60 m/s	- Rapid fluctuations destabilize grid balance - Requires quick ramping of backup generation or curtailment - May reduce wind farm efficiency during extreme changes
High Wind Events	Sustained wind speeds > 20 m/s, gusts > 25 m/s	- Turbines shut down for protection above 25 m/s - Risk of blade, tower, or substructure damage at > 40 m/s	Mechanical failures, maintenance delays during storms	- Power output ceases when turbines shut down - Extreme high winds stress grid balancing during power ramping - Regional outages possible due to grid overload
Dunkelflauten (Dark Doldrums)	Low solar irradiance (<150 W/m²), low wind speed (<3 m/s)	- Combined capacity factor < 0.06 over 48 hours	Grid stress, increased energy demand for heating	- Sharp drops in renewable generation - Requires heavy reliance on fossil fuel or stored energy - Grid stability threatened by prolonged low generation
Hellsturm (Sunny/Windy Overproduction)	High solar irradiance (>800 W/m²), high wind speeds (>20 m/s)	- Renewable generation > 90th percentile, demand < 10th percentile	challenges	- Excess power leads to curtailment and revenue loss - Overproduction stresses grid, requiring storage or export options
Heatwaves	Temperatures > 35°C	- Persistent events lasting >3 days	Overheating of power components, reduced cooling system efficiency	- Solar production peaks but efficiency drops above 30°C - Increased electricity demand for cooling - Stress on transmission systems due to high demand

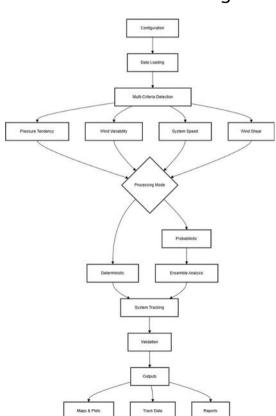
© GeoSphere Austria – Irene Schicker

Extreme Power System Event – Definitions -

Event Type	Key Parameters	Severity Levels	Infrastructure Impacts	Impacts on Power Production and Grid Stability	
Cold Spells	Temperatures < -10°C	- Persistent low temperatures, often coinciding with low wind speeds	Increased energy demand, icing on turbines	- Significant reliance on backup generation - Increased heating demand amplifies grid stress - Reduced wind energy efficiency due to icing	
Snow/Ice Events	Snowfall, ice accumulation	- Wet snow weight > 240 kg/m² can damage PV modules	Turbine shutdown, reduced PV efficiency due to shading	- Solar generation curtailed due to snow cover - Icing of transmission lines increases failure risks - Wind farm production halts due to icing	
Thunder- storms	Lightning, hail, wind gusts	- Hail diameter > 3 cm damages PV - Severe impacts with hail > 5 cm	Hail cracks PV modules, rapid power fluctuations	- Power surges can damage grid components - Curtailment required during gusty conditions - Localized blackouts possible	
Flooding	River discharge > 98th percentile (duration >30 min)	- Tailwater rise reduces hydropower generation capacity	Sediment load increases turbine wear	- Reduced hydropower output due to high tailwater - Infrastructure failures disrupt regional power supply - Risk of electrical faults in flood zones	
Wind Droughts	Wind speeds < 2 m/s	- Prolonged events (>7 days) with <2 m/s	Reduced wind energy production, grid stability risks	- Prolonged low wind generation strains grid reliability - Requires heavy reliance on other renewable or non- renewable resources - Load shedding may occur	

© GeoSphere Austria – Irene Schicker

Dealing with Extreme Power System Events – Heuristics -


Physics-informed pattern detection of adverse weather events and model mixing

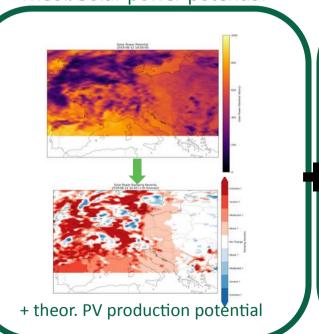
Fast running low pressure systems – Challenge of rapid wind changes

- Critical for renewable energy
- Grid stability risks
- Economic impact

Solution: Heuristic tree of actions

- Automated detection using multiple meteorological criteria
- Manual adjustment possibilities
- Probabilistic uncertainty quantification
- High-resolution spatial analysis
- Low resolutions "grid size" independant
- Real-time processing capability

WS Extreme Power System – Severity Indices -



Looking ahead and evaluating conditions ... before it becomes critical !!!

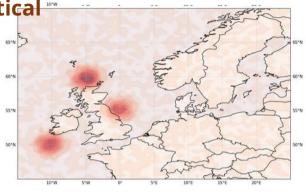
Theor. Solar power potential

Thunderstorm severity index

SSI Index Value	Instability Condition		
>0	Stability		
-3 and 0	Mid level instability		
-6 and -4	High level instability		
<-6	Ultra high level instability		

26

Dealing with Extreme Power System Events – Storm Tracking -


Physics-informed pattern detection of adverse weather events and model mixing ... before it becomes critical

Method

- Multi-criteria ensemble approach for fast-system detection
- Spatial-temporal neighborhoods to reduce verification double penalty
- Energy-sector specific validation against wind farm observations

obser various					
Criterion	Meteorological Variable	Threshold	Physical Meaning	Data Level	
Pressure Tendency	dp/dt (pressure change rate)	> 1.5-2.0 hPa/h	Rapid pressure drops indicate system passage	Surface (MSL)	
Wind Variability	σ(wind speed) temporal std	> 1.2-1.5 m/s	High wind fluctuations during system passage	10m level	
System Speed	Propagation velocity	> 12-15 m/s	Fast-moving systems of interest	Derived from pressure field	
Wind Shear	u ₈₅₀ - u ₁₀	> 10 m/s	Vertical wind structure indicates system strength	850 hPa - Surface	
Geostrophic Wind	$V(u_{m}^{2} + v_{m}^{2})$ at 500 hPa	> 20 m/s	Upper-level flow pattern strength	500 hPa level	
Thermal Wind	u ₈₅₀ - u ₁₀ magnitude	> 15 m/s	Temperature gradient indicator	850 hPa - Surface	
GeoSphere Austria – Irene Schicker					

Storm Tracking & Detection:

- Hodges (1994): "A general method for tracking analysis" - Established fundamental tracking algorithms
- Neu et al. (2013): IMILAST intercomparison -Standardized detection criteria and validation metrics

Renewable Energy Meteorology:

- Brayshaw et al. (2011): "Impact of large scale atmospheric circulation patterns on wind power" Linked synoptic patterns to energy generation
- Cannon et al. (2015): "Using reanalysis data to quantify extreme wind power statistics" - Statistical approaches for energy applications

Upcoming Workshop on Forecasting for Extremes in the Power System

Safe the date: 30.th Sep -1. Oct 2025 at DWD in Offenbach, near Frankfurt, DE

Workshop topics

Topic 1: Defining Extremes

Topic 2: Tools to mitigate Extremes in the power system

Topic 3: AI and Cybersecurity in Extreme situations

Topic 4: Uncertainty of Extremes and Decision-making in extremes

NEWS

iea-wind.org/task51

https://iea-wind.org/2025/02/14/iea-wind-task-51-workshop-on-extremes-in-the-power-system/

Agenda topics:

Definition and associated differences of extremes in meteorology and the power system

- extremes in weather with relation to the power system
- extremes in the power system and their weather dependency
- combinations of non-extremes that additively form an extreme (e.g. Dunkelflaute)

Forecasting tools to mitigate Extremes in the power system

- Forecasting tools availability for different time horizons (near-real-time, day ahead, long-term/seasonal forecasting...)
- Forecast types specific designed for extreme detection
- Difference between a general forecast and an extreme forecast software tool

AI and Cybersecurity in Extreme situations

- Risks with AI algorithms related to Extremes in the power system
- · Benefits of AI tools in or when approaching Extremes

Uncertainty of Extremes

• Decision-Making in Extremes – human factor, automatisation

Want to present your ideas/work on extremes?
Send an abstract to com@weprog.com

Collaboration Needs

& Research

Definition is key:

Which tools are necessary to tackle uncertainties & Extremes in systems with high penetration of renewable energy?

Impact when moving from 20% to 50+% RES in power grids in a changing climate

Definitions
weather
conditions &
power system

HOWTO deal with ...

visibility & operability DSO <-> TSO

Data quality requirements to tackle challenges in power system

iea-wind.org/task51

See following dissemination slides ...

Get in touch with us...

Operating Agent & Task Managers:

Caroline Draxl

Roskilde, Denmark Golden (CO), USA

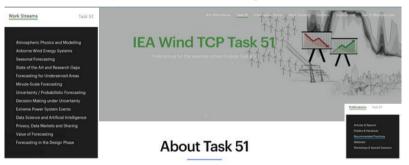
grgi@dtu.dk <u>caroline.draxl@epri.com</u>

presenting -----

Assens, Denmark

Corinna Möhrlen

com@weprog.com


The IEA Wind TCP agreement, also known as the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings, and publications of IEA Wind do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.

Gregor Giebel

Task 51 Web Presence

Website

https://iea-wind.org/task51

Forecasting for the Weather Driven Energy System - Improving the value of renewable energy forecasts to the wind industry

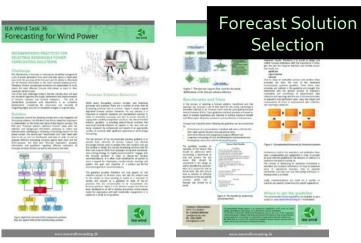
The Task 51, under the IEA Implementing Agreement for Co-operation in the Research. Development, and Deployment of Wind Energy Systems (IEA Wind) focuses on improving the value of renewable energy forecasts.

There are three district areas of challenge in forecasting wind gower. The first area is in the continuing effort to improve the representation of physical processes in weather forecast models through both new high performance initializations and tailored parameterizations. The second area is the heterogeneity of the forecasters and end users, the full understanding of the uncertainties who the modelling chain and the incorporation of novel data into power forecasting algorithms. A third area is representation, communication, and use of these uncertainties to industry in forms that readily support decision-making in plant operations and electricity markets.

This Task will focus on facilitating communication and collaborations among international research groups engaged in the improvement of the accuracy and applicability of forecast models and their utility for the stakeholders in the wind industry, in the power sector and in the energy system. This Task has the following specific objectives:

- To establish an active, open forum for sharing knowledge among the participants, related IEA Wind Tasks and other related TCPs through workshops, dissemination and communication measures
- To establish and communicate standards and frameworks for the operation and evaluation of forecast model performance
- To identify paths to increased application and utility of forecast information to the task stakeholders
- To advance the knowledge in the underlying atmospheric physics, in the mathematical models converting the transforming atmospheric quantities to energy system application variables, in the modelling of the uncertainty and in the applications and decision-making
- To identify most promising areas for new research to improve the quality and utility of forecasts
- To provide guidelines for the implementation of optimal forecasting solutions

https://www.youtube.com/c/ IEAWindForecasting


IEAWindForecasting https://youtu.be/t6H7diavQdg

Handouts

- 2-page handouts: quick overview of major results
- 3 currently available; can be obtained from:

https://iea-wind.org/task51/task51-publications/task51-posters-and-handouts/

Elsevier OpenAccess Book

ORDER or DOWNLOAD for free NOW!

ISBN: 978-0-443-18681-3 PUB DATE: November 2022 DISCOUNT: Non-serials FORMAT: Paperback

Editors: Corinna Möhrlen, John W. Zack, and Gregor Giebel

https://www.elsevier.com/books/iea-wind-recommended-practice-for-the-implementation-of-renewable-energy-forecasting-solutions/mohrlen/978-0-443-18681-3

Online OpenAccess:

https://www.sciencedirect.com/book/9780443186813/iea-wind-recommended-practice-for-the-implementation-of-renewable-energy-forecasting-solutions

IEA Wind Task 51 Information

iea-wind.org → Task 51 → Publications → Recommended Practice

IEA Wind Recommended
Practice for the Implementation
of Renewable Energy
Forecasting Solutions

Corinna Möhrlen John W. Zack Gregor Giebel

IEA Best Practice Recommendations for the Selection of a Wind Forecasting Solution v2: Set of 4 Documents

RECOMMENDED PRACTICE FOR THE IMPLEMENTATION OF RENEWABLE ENERGY FORECASTING SOLUTIONS

- Part 1: FORECAST SOLUTION SELECTION PROCESS -

2. EDITION

Draft for Review by the Executive Committee of the International Energy Agency Implementing Agreement

Prepared by IEA Wind Task 36

Part 1: Selection of an Optimal Forecast Solution

RECOMMENDED PRACTICE FOR THE IMPLEMENTATION OF RENEWABLE ENERGY FORECASTING SOLUTIONS

- Part 2: DESIGNING AND EXECUTING FORECASTING BENCHMARKS AND TRIALS -

2. EDITION

Draft for Review by the Executive Committee of the International Energy Agency Implementing Agreement

Prepared by IEA Wind Task 36

Part 2: Design and Execution of Benchmarks and Trials

RECOMMENDED PRACTICE FOR THE IMPLEMENTATION OF RENEWABLE ENERGY FORECASTING SOLUTIONS

- Part 3: Forecast Solution Evaluation -

2. EDITION

Draft for Review by Executive Committee of the International Energy Agency Implementing Agreement

Prepared by IEA Wind Task 36

Part 3: Evaluation of Forecasts and Forecast Solutions

RECOMMENDED PRACTICE FOR THE IMPLEMENTATION OF RENEWABLE ENERGY FORECASTING SOLUTIONS

 Part 4: Meteorological and Power Data Requirements for real-time forecasting Applications-

1. EDITION

Draft for Review by the Executive Committee of the International Energy Agency Implementing Agreement

Prepared by IEA Wind Task 36

Part 4: Data Requirements for Real-time Applications

Now as OpenAccess book!

Validation & Verification code examples

EA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions

code examples

Examples developed within the IEA Wind Task 36 and Task 51:

See: https://iea-wind.org/task51/task51-publications/task51-recommended-practices/

Wind Energy Engineering

2023, Pages 321-322

evalprob4cast

An R-package for evaluation of ensembles as probabilistic forecasts or event forecasts

Appendix G - Validation and verification

code examples

Available on GitHub: https://github.com/jbrowell/evalprob4cast

Publication: https://doi.org/10.48550/arXiv.2504.03544

Existing metrics: CRPS, Brier Score, ROC curve, Histograms,

Reliability Diagram, Contingency table

Graphics: time series, histograms, ROC curve, CRPS

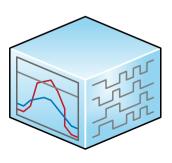
Package evalprob 4cast Chapter 14, Section 14.3 Assessment of forecast

WE-validate

Software package for Wind Energy Validation

Available on GitHub: https://github.com/joejoeyjoseph/WE-Validate

Publication: https://www.sciencedirect.com/science/article/pii/S0960148122014707


Use Case: Demo Jupyter Notebook (U.S. Mountain Wave case):

Existing metrics: RMSE, cRMSE, mean bias, mean absolute error

Existing plots: time series, histogram, scatter plot

See also our workshops & conference page:

https://iea-wind.org/task51/task51-publications/task51-workshops-and-special-sessions/

Publications

Information Portal

The Task 51 Information Portal aims to be a useful resource for people in forecasting, especially providing links to publically available data for model development.

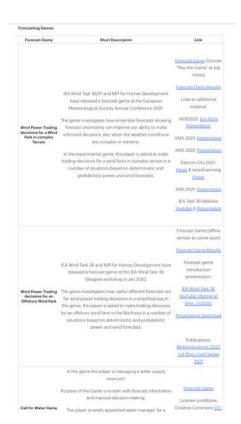
https://iea-wind.org/task-51/t51-information-portal/

The Task members identified several issues which might be useful in an information portal for wind power forecasting. Those are:

- A list of meteorology masts with online data over 100m height, useful for verification of wind speed predictions
- A list of meteorological experiments going on currently or recently, either to participate or to verify a flow model against
- A list of publicly available wind power forecasting benchmarks, to test your model against
- A list of current or finished research projects in the field of wind power forecasting
- A list of future research issues
- A list of open weather data

For all of those, we would be happy to accept input, so head over to the site and see where you can help, or what you can use!

Please find the full text of the task description here.



The task is led by Gregor Giebel from DTU Wind Energy.

Workstream Decision-making under Uncertainty

Decision making under uncertainty

Table and collection of forecasting Games:

iea-wind.org/taks 51

→ Workstreams → Decision Making under Uncertainty

https://iea-wind.org/task51/tas k51-work-streams/ws-decisionmaking-under-uncertainty/

Research projects

https://iea-wind.org/task-51/project-list/

Here are some ongoing and finished projects towards short-term prediction of wind power throughout the last two decades. In total, the public (and partly private) spending on this list exceeds 150 million euro.

Country	Project acronym	Full title	Sponsor	Total / Funded budget	Start - end date	Participants incl. those from IEA Task 36/51
DE	WindStore	Optimized system integration of offshore wind energy through intelligent linking of various forecast concepts and forward-looking management of distributed cascade storage systems.	BMWK (German Federal Ministery for Economics and Climate Protection)	1.76 M€ / 1.47 M€	Jan 2024 – Dec 2026	Fraunhofer IEE, DLR, 4Cast SETrade, WEPROG, EnBW, Stadtwerke Hassfurt und Wunsiedel
BE	BeFORECAST	Wake-effect included offshore wind power forecasting for smooth operation of the Belgian electricity grid based on advanced data handling and sensor technology, including airborne systems.	Energy Transition Funds of the Federal Public Service Economy of the Belgian Federal Government	3.25 M€ / 2.74 M€	Nov 23 – Oct 25	von Karman Institute for Fluid Dynamics, Vrije Universiteit Brussel, KU Leuven, 3E, SABCA, Royal Meteorological Institute of Belgium
ÜK		Multi-variate forecasting for wind power integration in electricity markets	Shell/ETP Scotland	90k€/120k€	Oct 22 - Mar26	University of Glasgow, Jethro Browell

