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Abstract—Forecast methodologies have advanced over the
past 20 years along side the needs of system operation and
trading of energy at the power exchange markets. Like every
discipline in development, also forecasting of renewable genera-
tion has evolved disruptive and chaotic at times when new ways
to handle these variable sources were sought. The forecasts of
these sources inherit an uncertainty in their operation due to
the uncertainty of the underlying weather forecast. Once these
uncertainties are understood the future outcome at the time
scale required to operate our electric grids and trade the energy
on our power exchanges can be forecasted much more efficient
than with deterministic methods. Uncertainty forecasts are
filling a gap of information missing in deterministic approaches
and are gradually moving into the control rooms and trading
floors. Nevertheless, there are a number of barriers in the
industrial adaptation of uncertainty forecasts that have their
root in a lack of understanding of the methodologies and their
respective applicability. There is a complication level that needs
to be overcome in order to move forward. The IEA Wind
Task 36 has been carrying out a number of expert round
discussions picking up a number of the loose ends of integration
and application issues. The applications presently used in
industry, suggestions how to apply and integrate uncertainty
forecasts into operation and an outlook from this discussion
are presented and discussed hereafter.

I. INTRODUCTION

Until now, most wind power forecasting solutions are
deterministic, ignoring the uncertainty of the forecast, both
in terms of the weather forecast uncertainty, but also of non-
weather related power generation conversion uncertainty.

Probabilistic forecasts draw a much better picture of
the forecast process and enable the user to understand the
underlying uncertainty inherent in any forecast. But from
where does the uncertainty in wind power generation arise?
How are wind power forecasts produced? How can the
uncertainty in a wind power forecast be communicated?
What are some of the ways that probabilistic forecasts are
currently used in practice, and how might they be used in
the future? We will in the next sections shed light into
these questions and provide a practical guide to the use and
examples of applications of uncertainty forecasts and their
relationship to defining and making use of the knowledge
when dealing with weather dependent power resources.
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II. METHODS FOR GENERATING UNCERTAINTY
FORECASTS

The methodology with which uncertainty forecasts are
generated is a crucial parameter for the success of an
application for a specific purpose. There are simple statistical

methods that are almost cost neutral, once a deterministic
model result is available and there are methods that bare
significant costs and in order to achieve a consistent and
weather dependent real-time result. Some methods rely
solely on historical and climatological information and do
not contain any information about the current weather con-
ditions and no time dependence. Such methodologies are
limited in their applicability. This is an important aspect
that is often neglected, especially in public procurements,
where cost has highest weight. If the requirements for the
methodology are not set correct, the end-user risks to buy
a product that does not fit purpose. In Bessa et al. [1], all
common methodologies for uncertainty forecasts have been
reviewed and described in detail. We therefore only name
the relevant approaches here to be able to refer to them in
the discussion of the applications.

There are two ways of determining uncertainty:

(A) Statistical methods
(B) Statistical Scenarios
(C) NWP Ensemble forecasts based on parameterization

differences
(D) NWP Ensemble forecasts from perturbed deterministic

models

The four main methodologies will be used in the following
description of applications for uncertainty forecasts with
their letters.

III. APPLICATIONS FOR UNCERTAINTY FORECASTS

In this section we will concentrate on describing appli-
cations of uncertainty forecasts in the operations of sys-
tem operators, utilities, market management organisations or
traders in the power sector. Some of the applications may
be described for one specific purpose. In that case, it should
be considered an example or an inspiration source for the
application rather than a recommendation for use in only that
specific case. The list is not exhaustive and covers only parts
of possible applications. The authors have tried to focused
on the most relevant applications for current development
level and trends in the power industry. For example, “Using
uncertainty forecasts for risk evaluation in the control room”
and “Dynamic Reserve Prediction” have been discussed in
more detail already in [1], [2] and [3].

17th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on 
Transmission Networks for Offshore Wind Power Plant – 2018 -
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A. Using uncertainty forecasts for situational awareness in
the control room

Situational awareness has been a topic so far mostly at
system operator level as a tool to take the “uncomfortable”
surprises with high costs in the electric grid out of the
control rooms and to help the operators be better prepared
for “unforeseen” imbalances. In many cases, the managers
are afraid that there is too much information available to
the operators and think an overload of information takes
the focus from concentrated work. Unfortunately, this has
been and is exactly the wrong strategy in this case. It has
been investigated thoroughly with lab experiments [4] that
operators get more confused by not knowing when they can
trust a forecast and when they have to expect that a forecast
can be way off. The issue here is that forecast uncertainty is
not something that can be ignored. Especially, because the
industry has developed in a way that quality and performance
is measured with standard statistical methods, which in fact
dampens all extremes and hence “confuse” exactly when it
is most critical.

Making the uncertainty of forecasts visible is therefore
an empowering method for the operators and should not be
seen as a complication. Providing information to the operator
about the trustworthiness of a forecast and possible outliers is
exactly what is required to be prepared and be able to act in
good time, making operations more smooth, less expensive
and after all much less stressful.

The two most important requirements in the development
of situational awareness in the control room are associated
with:

(1) method being used to provide uncertainty indicators
(2) communication of the uncertainty
The pitfalls are that these two aspects are not taken serious

enough in the planning and design phase. It is not so much
the design of any type of graphics, but more the availability
of the correct methodology for the task at hand and the way
the uncertainty is provided in order for the operators to be
able to best handle and absorb the information. Some people
prefer graphical solutions and others text that is added to the
the interfaces. Nevertheless, it is crucial that this is taken
into account in the design phase. Interviews with system
operators within the IEA Wind Task 36 have shown that the
relevant information often needs to come as raw informa-
tion not as pre-fabricated, as is possible with deterministic
forecasts. For example, if ensemble forecasts are used to
estimate the uncertainty of the power in-feed, the forecasts
of the individual ensemble members need to be supplied
as raw input, i.e. not calibrated to a specific time horizon,
as these information has to propagate also into the load
forecasts. In such a case, there is only two methodologies
available, namely physical ensembles of type multi-scheme
or multi-model, as they need no time horizon calibration or
statistical scenarios with time-dependency. If other methods
are applied, the end-user will become disappointed and think
that the development is not far enough established.

B. Using uncertainty forecasts for trading and balancing

It is part of the DNA of traders to look for profits. But,
what do you do, if you cant earn money, where you should.

Usually, if classical trading does not bring profits, the traders
look for areas, where they can take risks and get rewarded. In
other words, the trader starts to speculate. In some markets,
where forecasting is done on a per wind farm basis, the risk
for speculation is higher. Especially, if there are few forecast
providers or a monopoly that provides forecasts to more than
40% of the market participants. In this case, the risk for
speculation increases. The following points are critical points
for such situations:

• if the entire market uses the same procedures, its easy
to speculate against system imbalance

• if there is no real competition and the same tools are
used to balance and to trade, its easy to manipulate

• if curtailment increases, its easy to cheat wind farm
owners

The result of such situations usually are higher balancing
costs on the system leading to more expensive reserve,
lower system security, due to missing reserve in extreme
events and ultimately higher costs for consumers, when
market prices fall and reserve costs increase. The way such
situations can be avoided and “the cancer in the syste”
healed is by applying uncertainty forecasts. By doing so, the
traders become price makers and reduce system imbalance
by bidding the “secure” part of the forecast unlimited and
the uncertain part with higher prices. On the other side
of the equation, the system operator should be prepared
for outliers and extremes, allocate dynamic reserve and be
more confident and “aware of the situation”, i.e. knowing
the risk for fast ramps, large errors due to uncertain weather
conditions etc.

The strategy for a trader would be to:

(1) Split your pool into portions and become price maker
(2) Optimize your trading volume with intra-day balancing
(3) Base your bids on a preliminary plan for the balance

process
(4) Make sure you help to avoid negative prices
Using this strategy, the trader will experience the follow-

ing advantages:
• Reduced day-ahead schedule error with approx. 50%
• Reduced need for peak reserve
• Reduced volatility of balancing costs
• More volume in the market
• Small pools may not need to be 24x7 in the market
The most simple way to apply uncertainty forecasts for

traders has been described in detail by Moehrlen et al. [5]
already in 2012 and again in 2017 in Du et al. [2]. With such
a method a realistic uncertainty band is employed to a day-
ahead forecast and then used in combination with a short-
term forecast to decide within the intra-day how to bring
units into balance. It is of advantage, but not necessary, to
use a short-term forecast that is adopted to measurements.

Such trading strategies can of course also be automated
by simply letting a program decide upon threshold values
and limits, when and how much volume should be traded.
Once such trading strategies have been established, i.e.
point 1-3 in the list above is implemented, it is possible to
think of how to avoid negative prices, or in more general
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terms, how to trade some of your energy with higher costs
in order to maintain a market price that reflects the real
production costs. Let’s have a look at an example how to
establish this. In the example, we assume that a risk of
negative prices has been discovered. Our example pool
size is 2000 MW, where there are 200MW of controllable
wind power. The forecast shows an uncertainty (defined
as MAX-MIN of 450MW. The “best guess” forecast says
production lies at 1200MW and the overall trading strategy
says: “bid safe and work with a risk volume of 10% as
maximum trading volume above the unlimited cost price
to increase profit and increase pool balance”. In this case,
the first step is to decide hour for hour how much volume
we trade at higher costs. For simplicity, we regard here just
one hour. At hour 1 we take the following bids under the
respective assumption:

Bid unlimited: 1200MW − > market price
Bid price 1 (=0): 80MW − > prevent negative prices
Bid price 2 ( > 0): 60MW − > help to increase market price
Bid price 3 ( >> 0): 40MW − > increase income
Bid price 4 ( >>> 0): 20MW − > increase income further

Fig. 1. Example of a forecast with areas of high uncertainty (ca. 00:00-
06:00), which opens possibilities for trading parts of the pool at other
volumes and price levels.

Fig.1 shows the way a trading strategy can be built up,
i.e. once the hours of high uncertainty that contain an
“opportunity” are identified, different percentile values are
picked for each hour. This is done in a table. The table in
Fig.2 shows the way the trading strategy can be managed
manually or by an automatic algorithm, once the threshold
limits and the strategy is set. In each hour there is a value
for the minimum, P10...P90 and the maximum. An automatic
algorithm can now start evaluating in which hour the spread
is over the threshold value. Then compare the differences
between the percentiles and e.g. searches in the database
for similar events. On a manual basis, the trader can use
his expertise to adjust some volume to what is expected
to happen due to the weather situation and/or the way the
market reacts upon certain weather situations.

A typical example could be a low pressure system that
travels in a known path, where it is known that a small
difference in the center of the low pressure system can
cause a very different power generation pattern. If in such
cases, the market usually bids over, the trader now has the

1167 1158 1154 1086 1079 911 726 523 475 427 406
1281 1262 1245 1178 1137 948 802 617 538 506 472
1330 1310 1271 1205 1160 975 817 639 561 521 498
1350 1334 1295 1245 1184 1002 843 657 572 532 514
1376 1378 1316 1269 1211 1014 868 671 586 552 525
1398 1390 1367 1317 1248 1040 881 707 604 564 540
1426 1427 1379 1334 1270 1058 896 721 629 573 555
1459 1442 1403 1354 1286 1086 903 732 648 596 565
1531 1503 1457 1389 1324 1126 918 743 659 612 578
1598 1562 1517 1470 1379 1164 939 756 671 622 603
1721 1699 1657 1607 1502 1267 985 788 691 640 651

DA-FC [MW] 1403 1391 1350 1296 1238 1039 873 699 618 574 552
Measurement 1596 1558 1473 1355 1284 1113 886 691 591 548 537

Date
Hour

18. May 
00:00

18. May 
01:00

18. May 
02:00

18. May 
03:00

18. May 
04:00

18. May 
05:00

18. May 
06:00

18. May 
07:00

18. May 
08:00

18. May 
09:00

18. May 
10:00

Min [MW]
p10 [MW]
p20 [MW]
p30 [MW]
p40 [MW]
p50 [MW]
p60 [MW]
p70 [MW]
p80 [MW]
p90 [MW]
Max [MW]

Fig. 2. Example of a trading strategy, where parts of the pool is traded
within the uncertainty of the forecast with different price and volume levels.

opportunity to do the opposite to what he expects the market
will do when using a general average forecast. To not do this
purely subjectively, the trader stays within the uncertainty
of the forecast. That means, that he will not bid in with a
forecast below or above the minimum or maximum. That is
an essential and crucial feature of the application.

The step by step recipe to built up a trading strategy as a
guideline for the traders or the programmers, if an automatic
solution is chosen is summarized in the following. The four
main steps are:

(1) Know your pools controllable and non-controllable
generation

(2) Use appropriate uncertainty forecast intervals to:
• trade the safe part with a mean or deterministic

day-ahead forecast
• trade uncertain parts with higher prices and control

curtailment yourself
• trade in the intra-day market only difference out-

side uncertainty band
(3) Design price levels considering

• time of the day
• current weather situation
• liquidity in the market
• expected load
• risk for negative prices
• risk for curtailment

(4) Choose an appropriate method
Note that the last item in this list (4) is a crucial one.

For trading purposes you need an hour-to-hour uncertainty
method, which means that you need to ensure that the
method that is used is one of type B or C (see section II).
Method A and D are not suitable for this type of application
and will not provide the features that are needed to generate
an objective and weather dependent strategy. Method A is
generating only a spacial probability distribution and hence
lacks the time dimension. Method D needs calibration for the
time component and becomes computationally impossible
to handle in real-time, as an ensemble method of that type
required calibrated for each target horizons, if it is not that
of the raw ensemble output. This is seldom the case, due to
the various different obligations met services have to serve
the public. In the case of an intra-day trading a minimum of
24 calibrations would be required which is technically not
possible.

The main learning to take away from this is that
“METOHD IS IMPORTANT”. In the selection of vendors
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this is the most crucial point and should not be underes-
timated. It is important to understand the impacts of the
chosen method and be sure the method is suitable for the
application at hand.

1) Critical Ramp Events: In our discussion with end-
users, one end-user mentioned that ”Communication of
uncertainty in timing of ramp events is the most challenging.
It is not so much the uncertainty of the amplitude. Getting
the shape right would already help, even if the timing is
off”. If this would be the objective of a ramp forecast, then
the forecast provider would have to work on the shape,
i.e. allowing all extremes to develop and then generating
a probability function for it. The resulting ramp forecast
would have steep ramps, often with a time lag of a few
hours. If another forecast provider would consider how the
forecasts are evaluated by the customer, the strategy would
be to suppress the outliers and get less extreme ramps
with a timing that spans longer and generates less error
in average. Subjectively, the first provider does what the
customer asks for and what would provide most value for
the end-user. However, if the evaluation of the forecasts
is carried out with standard statistical metrics, e.g. root
mean square (RMSE) or mean absolute error (MAE), the
timing will be punished more than the lack of steepness
(amplitude). This is commonly called “double punishment”,
as the forecast is punished twice in the case of bad timing,
once for not having the peak at the right time and once for
having it where it did not happen. Figure 3 illustrates this
situation and the inherent misunderstandings between value
of a forecast and the evaluation of a forecast with standard
and average statistical verification methods. The forecast
vendor is put into the dilemma of fulfilling the customers
request or risking to loose a contract due to “insufficient”
forecast performance.
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Fig. 3. Illustration of typical phase errors (left fig.) and amplitude errors
(right figure). The phase error causes a a so-called “double punishment” in
a statistical averaging metric due to large amplitude errors prior to the peak
and past the peak.

Figure 4 shows a real ramp forecast inclusive the P10 to
P90 uncertainty bands from 75 ensemble forecasts. The risk
tuned prediction is the dark gray line and a least square
error optimized ramp prediction is shown in white, the
observations are the black line. The more realistic “looking”
ramp rate prediction (gray) has subjectively a much better
fit than the white line. However, with objective verification
the white “conservative” line gets a better score with a
statistical standard metric, because the more realistically
behaving forecast gets punished harder for the phase errors
than the other one for the missing peaks.

Fig. 4. A typical ramp example with uncertainty bands from an ensemble
prediction system of type (C) with phase errors marked in circles.

What should also be noted in figure 4 are the uncertainty
bands. Such bands provide a lot of value to the operator,
also if the end-users strategy is to employ more than one
forecaster for ramp events. Having a realistic uncertainty
distribution in every time step of the forecast, an operator can
much better evaluate the risk of a critical event, if this can
be expressed in probabilities such as quantile or percentile
bands.

As an example, an operator may have enough cheap or
unavoidable reserve for 200MW per 15min. If the risk of a
ramp exceeding this threshold goes beyond 25% probability,
the operator needs to act. In figure 4 we can spot about 6
peaks that reach above the 200MW limit. However, there is
only one with a probability exceeding 25%. At that stage,
there is a small risk (10%) of a peak that exceeds 200MW by
far and could reach up to 750MW in 15 min. Knowing this
one day in advance, or even 12 hours in advance will make
operations much easier and more efficient. The drawback:
there need to be established rules, thresholds, limits and
a communication layer. Without that, a forecaster cannot
provide the necessary information to make such a risk index
automatic and reliable.

2) High-speed shut down events: As mentioned already
in the last section, communication is crucial for the interpre-
tation of probabilities for a certain event to take place. The
information needs not always to be visually accessible, but
easy to interpret. This means that the operators need to be
able to understand the way probabilities are communicated to
them. As an example, Warnings that tell the operator that e.g.
there is a 10% probability of a 50% high-speed shut-down, or
a 5% probability of 90% shutdown, or a 90% probability of
a 10% shutdown have very different impact on the operation
and security requirements of the grid operation. In that sense,
choosing the appropriate method to discover events that are
critical for the system operation or establish procedures that
enable more cost efficient operation, is the starting point.
However, unless there is a structure of the thresholds, the
best method cannot deliver a useful product.

A warning system can be established in the form of
graphics or text. The underlying instruments however should
contain two components:

• Probability computation of the expected cut-off capacity
In cooperation with the end-user the system critical part
of the capacity will be determined (e.g. 30% of the
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TABLE I
EXAMPLE OF AN ALERT SYSTEM EVALUATION FOR TWO CASES .

Probability Threshold capacity case 1 case 2
[%] [%] [%] [%]
10% > 90 84 55
30% > 25 25 30
50% > 15 10 16
90% 10 7 5

capacity)
• Accumulation of the expected cut-off capacity

This component provides the accumulated cut-off prob-
ability of the expected temporal shortage of capacity
and ramps

In a graphical setup, where the end-user has access to the
graphics, receives a combination of text and graphics, or an
automatic solution is established, a table of the probabilities
with the information of (1) and (2) from above is useful, as
this allows the user to do a more detailed analysis and action
planning. Dependent on the time of issue of warnings, this
can be an extremely efficient planning tool.

To illustrate the difficulty and the importance of defining
what a critical event is for the end-user the example in
figure 5 shows an example of a graphical tool to interpret
a warning that has been generated by an automatic system.
The example shows two subsequent alerts.

Table I shows the raw values from the alert generation. It is
quite obvious that without an operating rule, the information
is not worth much, as an operator would not have the time
to figure out how much probability would be enough to start
acting upon a high-speed shutdown capacity percentage. The
threshold values in the above system can be seen in row 2
of table I.

In this case we can see that only the second threshold
in case 2 is fulfilled. If this is would be in 2 subsequent
forecast cycles, the warning would have been issued, but
only for case 2. The result of the actual cut-off scenario in
this example was consistent with the warning system. The
result of the peak cut-off capacities shown in the lower graph
of figure 5 were as follows:

Case 1: 25% peak cut-off
Case 2: 35% peak cut-off

In case 1, the cut-off was just on the edge of being critical
and in case 2 the warning was important, as the threshold
was exceeded by 5%. The lack of warning for case 1 shows
how important it is that such rules are defined with care and
assessed regularly.

The next step in the development of such a warning system
is to add the time aspect to the warning, i.e. to compute the
accumulated effect of high-speed shutdown events in space
and time. Only when the probabilities are accumulated, the
operators have the correct information about the required
reserve for such events, as it is often the area or time aspect
that is causing the problem in the operation of the grid.

Besides this, the communication layer of the alerts is
imperative in the development of the alarm system. The
communication frequency of the generated alerts need to
be handled with care. If too many alarms are send out, the
receiver do not take alerts serious when they may be. The
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Fig. 5. Example of a probabilistic type (C) method high-speed shut down
forecast of 2 concurrent events (upper fig.) and the corresponding power
production (lower fig) forecast shown with uncertainty bands P10..P90 and
measurements (dotted black line).

following list can assist in taking the most important time
coordinates into account:

• lead time of the alert
• change of severity level since previous alert
• initial week day
• valid week day
• time of day
• severity of the event computed from a ramp-rate
• the actions required
• the need and possibility to call back and/or revert

actions
A thumb rule for a strategy of issuing alerts is to (1) issue

every alert according to a simple scheme, e.g. a probability
exceeding 10% for more than 2 subsequent forecasts rounds,
and (2) reduce the amount of alerts to a minimum in order
to prevent that critical alerts are not accidentally overlooked.
It is wise to observe the situation before an alarm is issued.
In that sense, this type of service is partially automatic and
partially manual interpretation. As more such systems will
be developed, there will be more experience with the types
of alters and automation of the process can be expected.

Lastly, it is imperative that there are established proce-
dures for:

• Training, analysis of effective information handling
• Guide lines on action upon presented alert probabilities

C. Grid Technical Constraints Management

System operators of transmission and distribution systems
are exploring the predictive grid management paradigm,
divided in two phases: (i) anticipate technical problems such
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as congestion and voltage limits violation in the electrical
grid in advance; ii) define remedial actions (e.g. grid re-
configuration, demand response, re-dispatch) to solve the
potential technical problems.

However, the information that is being included, for
instance in the Day Ahead Congestion Forecasting (DACF)
[6], consists of deterministic forecasts for both load and
renewable energy. The main barriers for the integration of
renewable energy forecast uncertainty in network operational
management are the following:

• The uncertainty representation should fully capture at
least the spatial dependence structure (and the temporal
structure in case of multi-period constraints), which can
be met by using calibrated meteorological ensembles
for grid nodes. However, this requires the implementa-
tion of stochastic optimization methods [7] that exhibit
high computational times and human operators are used
to receive fast (and simple) advices for remedial actions.

• Integration of uncertainty will increase the operational
cost due to a trade-off between cost and exposed risk. In
the state of the art there is a lack of business cases that
perform cost-benefit analysis of stochastic approaches
for grid management. This gap is not contributing to a
wide adoption of these techniques by the industry.

• Cognitive load of human operators in the presence of
probabilistic information for a large electrical network.
Similarly to human traders (see section III-B), human
operators in control rooms also like to use their exper-
tise to define remedial actions based on what is expected
to happen and search “mentally” for similar situations.

Potential solutions to facilitate the integration of forecast
uncertainty in network analysis can be summarized to the
following:

• Integrate forecast uncertainty in “imitation learning”
methodologies, i.e. automatic procedure that imitate
decisions made by experts [8]. This will ease the
acceptance of the information about uncertainty by the
human operator.

• Design local (or segmented) stochastic optimization
methods, instead of applying large-scale stochastic op-
timization tools for the full network. This approach
will decrease the computational time, as well as the
complexity in visualizing the forecasted information
and remedial actions definition.

• Invest in new visualization techniques, e.g. hypervision
to reduce number of informations into a manageable
amount of data and alarms [9].

IV. SUMMARY AND OUTLOOK

The integration of uncertainty forecasts into grid control,
grid management and trading strategies is not a fast roll-out
into the industry due to an increased level of complexity
and computational requirements, different approaches and
methodologies, some with limitations that have caused dis-
trust to the overall concepts, and finally the paradigm shift
required to accept uncertainty as a parameter that needs
to be dealt with. It’s not that operators did not deal with
uncertainty before, the N-1 criteria is the counterpart of
dealing with uncertainty in the grid. Nevertheless, dealing

with new technologies, where the uncertainty needs to be
considered constantly, not only as single events, requires a
mind shift and new tools in the control and trading rooms
in order to be accepted.

As penetration of wind and solar power increases, this step
will naturally be taken due to the increases in uncertainty
and grid constraints. Once a threshold of renewables feeding
into the grid is reached, probabilistic methods seem to be
required in order to manage the large ramps associated with
wind changes or strong cloud activity. Societal changes also
increase the variability in the load pattern, which needs to
be incorporated into the grid management.

For this reason, part of the IEA Task 36 is dedicated
to translate academic knowledge into industry applications
to increase this acceptance and provide objective informa-
tion about existing methods to deal with uncertainty, how,
when and which method to apply to typical or specific
challenges and publish freely accessible information for
the industry and interested individuals through the website
ieawindforecasting.dk and open access publications.
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